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ABSTRACT

This thesis is concerned with an empirical Bayes procedure and its
application to communication theory. The communication problem is one
in which a sequence of informetion bearing signels is either assumed
to be a stationary random process or distorted by a stationary random
process. In either case, the underlying probability structure is un-
known. The message sequence is then added to correlasted gaussien noise.
The statistical inference problem is to extract information from each
member of the observation sequence, i.e., make a decision as to the
presence of a particular signal. The empirical Bayes procedure utilizes
all past observations to obtein consistent estimates of the unknown
distributions or related quantities. These estimates are then used to
form a sequence of test functions which is evaluated using only the
present observation. It is shown that the sequence of test functions
converges to the test function one would use if all distributions were
known and if the observations were independent. For a minimum probability
of error criterion, the resulting difference in error probabilities
is dominated by a quantity proportional to the mean-square error in the
estimate of the test function.

In particular, we consider the class of problems where the marginal
density function of an observation is the convolution of a gaussian den-
sity function and an unknown distribution, f(x) = [e(x-z;0)dafz). By
suitably interpreting a(z), a variety of communicetion problems are in-
cluded. Much of this study is concerned with obtaining consistent
estimates of f(x) given the sequence of dependent, identically distributed
random varisbles Xi=Ni+Zj, i=l,...n. Three techniques are presented:

a kernel method which is similar to the procedure used for estimating

a spectral density, an orthogonal expansion for f(x) in Hermite functions,
and an eigenfunction representastion obtained by solving an eigenfunc-
tion problem associated with the integral equation for f(x). For all
three methods, we calculate the bounds on the mean-square error in the
estimate of f(x). A typical result is: if the autocorrelation func-
tion of the gaussien noise is absolutely integrable and eventually
monotonically decreassing, and if the sequence Zi is M-dependent, the
rate of convergence of the estimates is the ,same as in the case of in-
dependent observations. The rate is O(l/nh/5) for the kernel method.
For the orthogonal expansion, with the r-th absolute moment of Z finite,
the rate is O(l/n(r'2 T). With the eigenfunction representation, we
estimate a quantity related to f(x) and obtain the rate O(1n®n/n). The
techniques are then extended to the case of estimating a k-variate den-
sity function f(x7y...xx).

xi



These results allow us to bound the rate of convergence of the risk
incurred using the empirical procedure in a number of communication prob-
lems. The problems considered are: communication through an unknown,
stationary, random channel when learning samples (channel sounding signals)
are available, communication through en unknown random multiplicative
channel, and the transmission of known signals with unknown & priori prob-
gbilities.

xii



CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

This thesis is concerned with a class of hypothesis testing prob-
lems in which not all pertinent statistics are known, but where the ob-
server is repeatedly faced with the same decision problem. The type of
problem we want to discuss is one in which a sequence of information
bearing signals is assumed to be, or distorted by, a stationary random
process whose underlying probability structure is unknown. The message
sequence is then added to correlated gaussian noise. The statistical
inference problem is to extract information from each member of the ob-
servation sequence, i.e., make a decision as to the presence of a par-
ticular signal. The empirical Bayes technique which we shall discuss
involves the use of accumulated past observations to obtain consistent
estimates of the unknown distributions or related quantities. These
estimates are then used to form a sequence of test functions which con-
verges to the test function one would use if all pertinent distributions
were known and if the sequence of observations were independent. These
remarks are perhaps best clarified by a simple example.

Suppose we have an observation X=N+Z, where N is a gaussian ran-
dom variable with mean zero and standard deviation equal to one. Z is
assumed to a random variable which takes on the values O and 1 with prob-

ability pPo and p1=l-py, respectively. We take Z independent of N.

1



Designate the distribution of Z by @(z) and let the gaussian density
with a standard deviation equal to 1 be denoted by g(x;1) The den-

sity function of the observation X is then written.

f(x) = [g(x-2z;1)de(z)
(1.1.1)
= pog(x;1) + pyg(x-1;1)

We want to test whether Z=0 or 1 with a minimum probability of
error criterion. The optimum test procedure is known to be a likeli-
hood ratio test with a threshold of one. Using the logarithm of the

likelihood ratio, an equivalent procedure is to evaluate the function.

1-p,
x-1/2 + 21
P,

x-c,

T(x)

(1.1.2)

and compare it to a zero threshold. The test procedure which minimizes
the probability of error is to choose Hy (Z=1) if T(x)20 and Ho if T
(x)< 0. Iet G(x) denote the cumulative gaussian distribution function.

Then, the probability of an incorrect decision is given by

Pe = p1 G(e-1) + (l-p1 )(1-G(c)). (1.1.3)

P, as a function of p; is called the Bayes envelope function and is the
minimum probability of error attainable. A plot of this function is

given in Figure 1.



Suppose Py is unknown and that we have a "good" estimate which we

denote by %l' Then, we might use the test function

A
x-1/2 + 2n<l'pl> (1.1.4)
B

= X=C

/1}(X)

and compare this quantity to a zero threshold. The reason for this is
N\
that if 'p; is close to py, T(x) ought to be close to the Bayes test
function T(x). This is in fact the case as can be seen by calculating
A
the probability of error as a result of using T(x). Defining this prob-

ability of error as P(%l,pl), a straightforward calculation yields
A A
PBp) = 261 + (Lp)(-6®). (115

A
A plot of P(ﬁl,pl) versus p; for different values of pj is also given

in Figure 1.
1.0 $1=0
P, or Pen
8
A
p1=.3
6
RN
A
P1=-5
.2
Bayes envelope A
function Pi=.T
61=1-
i 1 1 /] P
.2 A .6 .8 1.0 :

Figure 1. Probability of error vs. p,-



Now assume we are repeatedly faced with the same decision prob-
lem; we observe the sequence of stationary random variables xz,z=1,2,...
n, and for each observation X, we are to decide whether H, or H, is the
true state of nature. Prior to making a decision based on the observa-
tion Xp, we would use Xp to update the estimate of p,. For this example,

a convenient estimate of pl is

P =

n Xy (1.1.6)

=1

ol Lt
& My

Since ﬁln is a function of the observations, P(ﬁln,pl) is a ran-

dom variable. We define the average value of P(ﬁln,pl) by

P, = E((Pin,pa)). (1.1.7)

For the above procedure to be useful, we should have

limP__ = P
e R

(1.1.8)

et

That is, on the average, as the number of observations (and decisions)
increases, the probability of error Pop should approach Pe. An estimate
of how close Pgpy 1is to Pe as a function of n would also be of value.
In the next section we will show that for (8) to hold we need ﬁln
S s 1 ca A
converging in probability to pai. We also show that if D1, converges
in mean-square to pi, a knowledge of the mean-square error provides a

bound on the difference Pgp-Pe.

lWe will refer to equations within the section by the last index. 1In
referring to an equation in another section we will use all three
indices.



A
Let us calculate the mean-square error for the estimate p

Using (1), we see that the estimate is unbiased

in 1 (1.1.9)

Assume the sequence of observations {Xz} is independent. Then,

the mean-square error is

A = 1+p 1-p
E(3,0)2 = Wb, = St (1100

n

AN .
The estimate Pln converges in mean-square at the rate O(l/n),l

If, on the otherhand, we assume that the gaussian noise samples

are correlated, E(NgNm) = p,_;s» We have

n n
/\ H
wp ) = Mall®) o2 TV, (1.1.11)
in o 2 - om-4
=3 M=

From the stationarity assumption, we can write

n

n
Vb ) - o (1)) EZ (1- Nor  (1.1.12)
n

Assuming the correlation coefficients py are absolutely summable,

Z lor| B < «, (1.1.13)

we have

We use the standard big O notation to write V(p —O(l/n), which is
taken to mean that there is a constant a for Whlch J(p ) £ a/n.



n n
T=1 (1.1.1%)

n
V(gln) < 1*+p,(1-p)) 22 o]

1 .
n

Hence, if (13) holds,;gln converges in mean-square also at the rate
o(1/n).

Now, for the case of independent samples, T(x) as given by (2) is
the optimum test function; the test procedure using (2) results in the

A ‘
minimum probability of error, Pe. Then, using py, in (4) we have

A . A
Tn(x) =X .1/2 + 21n(l‘Plr>. (1.1.15)
P,

If, as a result of using fn(x), Pep converges to P., we say the se-
quence of test functions is asymptotically optimal. This definition
was introduced by Robbins [30].l

When the sequence of observations is dependent we will still use
the test function given by (15). With V(ﬁln)=0(l/n), we would expect
that gﬂl converges to Ig at the same rate as for the case of independent
observations. Now Pe is no longer the minimum probabilityvof error at-
tainable since we do not base the present decision on all past observa-
tions. We do, however, use all past observations to form an estimate
of T(x). For this case, we shall call T(x), as given by (2), the "op-
timum one-stage" test function. We will be concerned with the conver-

gence of @n(x) to this one-stage test function. Clearly, the one-stage

lNumbers in square brackets refer to references listed at the end of
the report.




test can be modified by basing a decision on a specified number of ob-
servations. Then, at the expense of increasing the number of hypoth-
eses to be tested, the probability of error would tend to decrease. In

general, this procedure is still suboptimum. We do not discuss it further.

We have called the learning and test procedure an empirical Bayes
procedure because the decision problem is one of making an inference
concerning the presence of a random varisble (or process) Z which is
distributed according to some a priori distribution a(z) and which we
will take as unknown. With dependent observations, which is the case
we will study, the procedure is neither an optimum (Bayes) nor asymp-
totically optimum procedure.

We now generalize the above problem and establish bounds on the

convergence of Pen to P..

1.2 THE EMPIRICAL BAYES PROCEDURE

We let the parameter A represent the hypothesis in effect when
the random variable X is observed.l A tekes on the values "O" and "1"
with probebility p, and P;=1-po, respectively. The observed random vari-
able X is governed by the density function fi(x) when A=i, i=0,1. The
density function fi(x) will, in general, be the convolution of a gaus-
sian density and some distribution function. The marginal, or overall

density function of the observation is

f(x) = pofo(x) + plfl(x) (1.2.1)

1In this formulation, and in the proof of asymptotic optimality for in-
dependent observations, we follow Robbins[30].




The choice of deciding between the two hypotheses is made by a
decision function t(x); t(x) is defined on the space of cbservations
and takes the values O or 1, according to which hypothesis we believe
is active. A loss function L{t(x),\) is also defired as the loss in-
curred when we make the decision t(x) and A\ is the true parameter. We
take the loss of a correct decision to be zero, L(C,0)=L(1,1)=0, and de-

fine
(1,0) = a > 0,1(0,1) = a3 >0.7 (1.2.2)

Letting b(A) = L(O,A) -L(1,A), we can write the loss incurred by using

t(x) as
L(t(x),A) = L(O,A) - t(x)b(}N). (1.2.3)

For any decision t(x), the expected loss as a function of the parameter
A 1s
R(t,A) = f L(t(x) ,A) f(x) dx. (1,2.4)
X

The expected or overall risk is defined as

R(t, ) f R(t,N) dx(N)

A
ff L(t(x),N) £ (x)d=(A)
A x

e will carry a5 and a, along in the develcpment even though we are
interested in a minimum probability of error criterion for which ag,

= a, =1.



where n{A) is the distribution forA. We can write the expected risk in

the form

R(t,n) = p,e, - d/\t(x)[plalfl(x) - Pogofolx) lax. (1.2.5)
x

If we denote the test function T(x) by

™(x) = plalfl(x) - PotofolX), (1.2.6)

then (5) becomes

R(t,n) = p.a, - Jf t(x) T(x) dx, (1.2.7)

X

and the procedure to minimize the overall risk is to choose

tp(x) 1 if T(x) 20

(1.2.8)

0 if T(x) < o.

The decision function defined in this manner is the Bayes decision func-

tion (with respect to the distribution =), and the Bayes (minimun) risk

is R(tB,n) = pa - fT(x) T oax, (1.2.9)
where T(x) Yo T(x) if T(x) > 0 and O if T(x) <O.

Now suppose that the test function T(x) is unknown and that we are
repeatedly faced with the same decision problem. (Both p; and fi(x)
may be taken as unknown.) At the n-th decision, we have observed the

sequence of stationary random variables Xg,4=1,2,...n, and we want to
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decide whether A =0 or Apl. The values ofAy(the states of nature),
£=1,2,...n-1, may or may not be known, i.e., we may not know whether
our previous decisions were correct. We agree to use only the present
cbservations X, to make a decision as to the value of Ay, but we use all
past observations to determine a decision function tn which takes on the
values O or 1. The decision function is now defined on the space of all
past observations. We designate this decision function by tn(xl’x2’°°°
xp) or, for notationsl convenience, by t,(xp).

Let Ep\n denote the mathematical expectation with respect to all
the random varilables Xl..LXﬁ%n, and Enl%n denote the conditional expec-
tation given An. With the loss given by (3), the expected loss at the

n-th stage is

R(tnsMn) = Bylanl(Litn(X,) M) (1.2.10)

and the overall loss is given by

R(tp,n) =/\M%ﬁMﬂM
(1.2.11)
= Fn')\n(L(tn(Xn);xn))=
This can also be written as
R(tn,n) = P,a,-Fn (tn (%) (M) (1.2.12)

Let Ex% denote the expectation with respect to the pair of random vari-

ables (x,N). If lim Eppg{(tn(Xn)b(An)) J=Eyxp ((tp(X)B(A)) ] then, in view
>0

of (4)-(6), we have
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lim R(t ,n) = R(tgn). (1.2.13)

n-¢o

A sequence of decision functions {tn(xl...xn)] such that (13) is
satisfied is said to be asymptotically optimal. This is the definition
Robbins adopted for the case of independent observationms. We shall now
obtain a bound on the convergence of (13) and also investigate the case
where the observations are dependent.

1.2a Independent Observations

Consider the second expression in (12):

Enpn(to(Xn)b(An)) = PoEnl)\('gn(xn)b(o)) + plEnl)‘(tn(Xn)b(l)).
= =1
In view of the independence and stationarity assumption, and the

definition of b(A), from (1) we have

p Bl (6, (X)0(0)) = - asp, [ £4(xp)
n-1 Ap=0

f ’ t (xl'"’%)f(’fl)‘"f(’ﬁl-l)dxl'“d’%-l ax
PlEnp\(t:E(Xn)b(l)) = plalffl(xn)
n=

Using the definition for T(x), we can write

and

tn(xl---xn)f(xn-l)dxl---dxn-l dx,

En(ta(%)20y)) = JES

{:_[...ftn(xl...xn)f(xl)...f(xn_l)dxl...dxn_l ax,



12

Define a sequence of test functions

1
Tn(xn) = Tn(xl’xg” --:xn_l:xnixn) .

T,(x,) is a function of Xps» whose functional form depends on the vari-

ables (observations) Xy...Xp. Suppose that for almost every fixed x

and arbitrary e,

lim Pr (|Tp(X,,...Xp-1,%5%) - T(x) | <e) = 1, (1.2.14)

T

i.e., Tn(xn) converges in probability to T(x) for almost every fixed x.

Further, define the sequence of decision functions by

.ex)) = 1 if Tn(xl...xn;xn)é 0

(1.2.15)

O otherwise

We then have

Enm(tn(xn)b(%n)) = .fT(X) [Pr{Tn(Xl"'Xn-l’x"x) 2 0}] ax,

and sinceu/xlT(x)ldxﬂ< @, 1t follows from the dominated convergence

theorem and (14) that

i

r\
J T(x) lim PriT (X ...X,_1,x;x) 2 0} dx

N0

f T(x) Tax.

Hm Eppn(tn(Xn) b))

1In this section we drop the A notation on R (Xy) .
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Theorem 1.2.1 (Robbins [30], p. 201): With T, (x,) such that (1L4) is

true and with tn(xn) defined by (15), the sequence of test functions

is asymptotically optimal in the sense that

lim R(tn,n) = R(tg,m)
n-wo
Perhaps the most convenient way to obtain a rate of convergence
is to assume that the sequence of test functions converges in mean-

square to T(x), uniformly in x. Suppose that for almost every X, the

inequality

2 2
En-l{lTn(Xl'"Xn-lfxix)-T(X)l} < B, (1.2.16)

is satisfied and that lim Bn=0.l Then, from the Chebyshev inequality,
N~

we have convergence in probability with the bound
2 ;2
Pr{lTn(Xl...Xn_l,x;x)-T(x)I > € } < By /e

for a.e.x.
Notice that by definition R(tn,n) > R(tp,n). From (9) end (12),

the difference in risks is given by
+
0 < R(tn,n)-R(tB,n) = [ T(x) ax ~ [ T(x)[Pr{Tn(Xl,Xe...Xn_l,x;x) > 0}]ax

Define T(x) = T(x) if T(x) < 0 and T(x) = O if T(x) > O. We then have

lEn_l denotes the expectation with respect to the first (n-1) random vari-

ables, X;...X, 1.
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+ + \
0= R(tn,ﬁ)-R(tB,n) = [ 2(x) ax - [ T(x) [PT[Tn(x) z 0}lax
- J o(x) [Pr(T, = O}]ax (1.2.17)

= J2(x) [Pr(T (%) < 0}lax - fr(x)"[Pr(T (x) 2 0)]ax.

Let A = {x:0 > T(x) > €} for srbitrary positive € and consider the first

expression on the right side of (17).

fT(x)+[Pr(Tn(x) < 0}]ax = fAT(x)+[Pr(Tn(x) < 0}lax + fAcT(x)+[Pr{Tn(x)< 0}]ax

For x contained in A, it follows from the bound below (16) that
2

Pr(,< 0} = Pr{Ty-T < -T) < Pr(Tp-T < - €} < B_/e®. Hence, the first
2

integral in the above expression is bounded by —g-fAT(x)+dx. For the
€

second integral, assuming a; > a5, we have
+ +
fA T(x) [Pr{Ty(x) < 0}]dx < [, T(x) ax
c c
< & fA [p1fa(x) + pofo(x)]ax = &, Pr{0 < T(x) < €)
c

= a;9,(¢) .

Collecting results, we have

BZ
Jn(x)*[Pr(Tp(x) <O0}ax < = [ (x)"ax + a,8,(e)

In a similar menner, the second integral on the right side of (17)

is bounded by

2

- Jo(x) [Pr(T,(x) > 0}lax < - 2 [ T(x)7ax + 182(e)
€
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where 82(6) = Pr{ -e < T(x) < 0}. We now have,

Corollary 1.2.1: Assume that the sequence of test functions T, con-

verges in mean-square as given by (16). Then, the risk at the n-th
decision is bounded by

2

0 < Btgym)-R(tpyn) < 22 f|n(x)|ax +5(e)

2
where 8(e) = Pr(|T(x)| < €} .
We shall now derive the same bound for the case of dependent

observations end also give conditions on f (x) and f1(x) so that

8(e) can be made arbitrarily small.

1.2b Dependent Observations

Let: f(xl,...,xn) denote the(n-variate) density function of the
random variables Xg,£=1,...n; f(xl:---:xh—l'xh:)h) be the conditional
density function of the first n-1 random variables given Ap and Xxp;
and f(xl,...,xnlxn) designate the density furction of the variables

XyeoosXps given An. In analogy to the previous development, we have
R(tn,n) = En\ (Ltn(Xn),A))) = py2y - Enxtﬁtn(xh)b(xn)): (1.2.18)
and

E( t'n( Xn) b( >\n) ) = plalEnI )\( 13_1‘1( Xn) ) = PoaoEn I )\( tn( Xn) ) .
n=1 n=0
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We write the first expectation on the right side as

n

r
Enlkr(l:f(xn)) = J ...jtn(xl...)gl)f(xl...xnlxh=l) dx,...dx

n-1
=f fl(xn){ f ce ftn_(xl. . .xnk) f(xl. . .xn_llxn,kn=l) dx_ .. .dxn__l ! dxn

The conditional density f(x-n|M=l) is written as f1(xn) . The second
expectation, E,|\ -0,is written with fo(xn) in place of fl(xh) and
n

(X500 5Xp1 EM Ay=0) in place of £(xy5.. .xn_1|xn, A =1) .
Using these expressions in (18), the empirical risk becomes

n-1
R (tp,n) = plal-Efplalfl(xn)[f“'ftn(xl"'xn)

f(xl. . 'x,n-llxn’%'n=l) dx, . .dxn_l:l dx,

n-1
'.fpoaofo(xn) l:f...ftn(xl...xn)f(xl...xn_llxn,>\n=0)dxl..

dxn_] dxn },

and upon using the definition of T(x), the risk is expressed as

n-1
R(t,,n) = P& 1'gT(x)l:f"'/‘t‘ﬂ{xl”'xn-l’}&l)

£(x, - oxp 1 [xp=%, Ap=1) dx,.. .dxn_l] dx

n-1
—fpoaofo(x) [f...ftn(xl...xn_l,x) f(xl...xn_llxn=x,>\,n=0) -

f(xl...xn_llxn=x,)\.n=l) dx_ ... dxn-l] dx \. (1.2.19)
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To demonstrate convergence, in contrast to (14), we now need to

require convergence in probability conditioned on the n-th pair of

random variables X, and Ap,

lim Pr ITh(xl...xm_l,x;x) - (%) | < e|Xn=x,M=1 =
-0

0, i =0,1. (1.2.20)

Clearly, this is satisfied if we have (conditional) mean-square conver-

gence for a.e.Xx,

0, i = 0,1. (1.2.21)

This condition, however, is difficult to verify. Under the assumption
that the marginal density functions pifi(x), i=0,1, do not equal zero

for almost all x, (21) is implied by the inequality

En(Tn'T)2 = JF... JF(Th(xl...xn_l,xn;xm) - T(xn))gf(xl...xn) dx ...

2
dx, =7y (1.2.22)

where lim y,=0. This average 1s considerably easier to obtain.
n-r-o

Then, it is easy to see that the empirical risk converges to the

risk incurred by using the one-state test:
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lim R(tpy,n) = pisa - ‘}FT(x)lim Prq Tp(X ... X, 1,%5%) 2 o}
100 ’ N0
M =0, Xy = X dx = .8, - fT(x) +dx=R(tB,:rt).

To get a rate of convergence, we proceed differently than in the
independent case; the reason being that the bound in (22) does not
imply a useful bound for (21) and (20).

From (5), we have

R(tp,n) = p,a, - Exa(tg(X)o(N),

and since R (tB,n) depends only on the present pair of random vari-

ables (Xp,Ap), we can write the difference of (18) and R(tB, n) as
0 = R(tp,n) - R(tB,n) =
En,\n(b(xn)(tB(xn) - tn(xl...xn))). (1.2.24)
Since b(A\) is & bounded function and assuming a;> ay, (24) is dominated by
0 = R(ty,n) - R(tg,n) = alEnltB(Xn) - (X X)) | (1.2.25)

The functions tg and t, take on the values O or 1. Hence, the contri-
butions to the expectation are the two cases where tBﬁtn. We have,

from (8) and (15),
0 = R(ty,n) - R(tg,w) € a Prq T(X X ,...X;5X) ¥0, T(Xp) <O

+ & Prq T (X ,X_...Xp;Xp) <0,7(Xy) 20
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Let €> 0 be an arbitrary constant and consider the first expres-

sion on the right side:

PrEUn‘éo,T<o}= Pr{Tn%O,Té-e}
- Pr{Tnzo,-e <T<O }

Assuming (22) holds, we have

pr{rn 20, T S -E}é Pr<: [Tn—T| g{} < 7n2/€2.

Letting &; (€)=Pr {e < T(x) < E}, it follows that

Pr<ETn§ 0, —e<T<O }: 81(e) Pr{gné o] -e<T= O:}

£85, ().

Hence, we have

Pr {Tnz O)T<§ g ')'ne/Ge + él(G) .

In a similar manner, we can show that

2, 2
Pr%rﬁ 0,T =2 (} = 7n</€ + 52(6) 5

where 52(e)=1>r{e >T(xn) 2 o}. Then, setting &(e) = & (e) + 62(6) =

Pr <|T(x) | < ¢ } » the difference in risks is dominated by
-
27y

2
€

0 = R(tn,n)-R(tB,r:) ES a, + 8(e) ). (1.2.26)
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To show that 8(e) can be made arbitrarily small, it is sufficient
to assume that the density functions fgo(x) and fl(x) are linearly inde-
pendent, and in addition, they are analytic functions of x.l

The linear independence assumption is not unreasonable since, if
the density functions were linearly dependent, one could not distin-
guish between the two hypotheses. The analytic assumption is more
then we need, but in the cases we are interested in this assumption will
always be met; fi(x) will be the convolution of a gaussian density
(which is analytic) with some distribution function.

These two a;sumptions imply that the roots of T(x)=0 are isolated.
For if T(x)=0 in some interval then, since T(x) is analytic, T(x) is
identically equal to zero. This violates the linear independence as-
sumption. Now, since T(x) is continous, it follows that for any spe-

cified 8, we can choose an € such that the probability of the set A=A

{x:.IT(x) I< e}satisfies Pr(A) £ 8. This gives the desired result

Pr{:]T(x)l < {}>§ 5(e).

We collect our results (and assumptions) in

Theorem 1.2.2: We observe the sequence of stationary dependent random

variables X ,£=1,2,...,with the marginal density function

f(x) = pofe(¥) *+ ».f(x).

Assume that a sequence of test functionms, Tn(xl,xz,...xn;xn) exists

which satisfies (22),

lBy linear independence we mean that there does not exist two non-zero
constant ¢y, ci, such that cofo(x) + c1f1(x) = 0, a.e.x. (Since the
f; are densities, linear dependence is equivalent to equality.)
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En([Tp(X, .. . XpiXy) - T(X) %) = 7n2,

2
and lim 7, =0. Define the seguence of decision functions by
N300

tn(xl,...xn) 1if Tn(xl,xe,...,xn;xn) 20

O otherwise.

If pifi(x)#o, for a.e.x, 1=0,1, the empirical risk converges to the risk
incurred using the one-stage procedure. In addition, if the density
functions fi(x), i=0,1, are linearly independent and analytic functions

of x, the difference in risks at the n-th decision is bounded by

2
2 n 4 s(e)

€2

A
o

0 s R(tn,:r) - R(tB,rr)

€ is an arbitrary positive constant and 8(€) can be made arbitrarily

small by a suitable choice of €.

We will have the occasion to consider a test function defined as

%(x) = s(x)T(x) = s(xj{:%lalfl(x) - aopofo(xz:}m (r.2.27)

Since s(x) will be a positive function, the decision function

tp(x) 1 if T(x) 2 0 (1.2.28)

O otherwise

1}

i1s identical to %B(x). Hence, the risk using this equivalent test,
R(tg,m), is equal to R(tg, ).

For the empirical procedure, we will then take
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Tn(xp) = s(xp) Tp(xy) (1.2.29)

1if s (xn)Tn(xn) 20

0O otherwise. (1.2.30)

Letting R(t,,n) denote the risk of this procedure, we have

R(tpm) = ap - B (3(X)b(x). (1.2.21)

The difference in risks is

~

0 5 R(ty,m - R(tym =5 9b(n)(t(X) - Zn(xh>>::}>

e En<{E%B(Xn) - %ﬁ(xn)J:}>. (1.2.32)

Then, by a proof which is identical to the previous theorem, we have

Corollary 1.2.2: Assume that the sequence of test functions satisfies

E, <{E%(Xn)(Tn(Xl...Xn;xn) - T(xn>>%:}> < (79)° (1.2.33)

and that 1lim y'=0. Assume further that the density functions fi(x),
o s n
i=0,1, are linearly independent and that the functions s(x)f;(x), i=

0,1, are analytic functions of x. Then, the difference in risks at the

n-th stage is bounded by

05 R(¥,n - REpn saf 27"+ s'(e) (1.2.34)
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where &§'(e) = Pr<{1é(x)T(x)|<%}> can be made arbitrarily small by suit-
able choice of €.

Similar results can be obtained for any equivalent test procedure.
By an equivalent procedure we mean a test function Te(x) such that for
every x, Te(x)2 O when T(x)2 0, and a decision function t(x) which
equals one when To(x)2 O and zero otherwise. In view of (32), a bound
on the difference in risks, analogous to (34), can easily be obtained.

These remarks can be extended to the results of the next two sub-
sections. Since the extension to equivalent tests is straightforward,

we will not discuss them further in this chapter.

1l.2c Extension Of The Dependent Case To Multiple Hypotheses

Let the parameter A take on the "values" k=<{§é,kl,...%g}. Again,

A\ designates which hypothesis is active. We take p; as the a priori
probability of the i-th hypothesis, z pi=1l, and fi(x) as the density
function of the observation given that A=Aj.

A test procedure is equivalent to specifying (K+1) decision func-
tions ti(x), i= 0,1,...K+l, defined on the space of observations such
that if, for a given x, ti(x)=1 we announce A; and if tj(x)=0, we do
not announce Aj. Clearly, we have X t;(x)=1, for all x.

If we take the loss as O for a correct classification and equal

to 1 if we are in error then, assuming that A=Aj, the loss is (l-(tj



2k

(x)).l The expected loss, given that x:xj, is

+00

R(tj,k) = Jf (l-tj(x))fj(x)dx

-00
and the overall loss, or expected risk, is
+00
R(t,n) = J[‘jr (l-tj(x))fj(x)dx an( )

)\-oo

400

- zz prj(l‘tj(x))fj(x)dx

S0
J=0

E; $00
1 - Z pJf tj(X)fj(X)dX.
jo T

We prefer to write this as

K +00
R(t,n) = 1 - p, - E: .Jf tj(x)Tj(x)dx,
j=o *

where the test functions Tj(x) are defined by

Tj(x) = pjfj(x) - pofo(x), j=0,1,...K.

The test procedure given by

typ(x) 1if Ty(x) 2 Tj(x), all j

0 otherwise,

(1.2.33)

(1.2.36)

(1.2.37)

(1.2.38)

(1.2.39)

We can think of ts;(x) as the probability of announcing A=Aj when we
observe x. (l-tjex)) is then the probability of an error given that

K=Kj.
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minimizes the probability of error. The minimum probsbility of error

is then
K
R(tB,x) = 1-9, - }: 4[ -tj(x)Tj(x)dx,
J=0
K
= 1l-p,- }: Tj(x)dx,

jo M

- . 2 L }
where Aj-Aj<{EE. Tj(x) 2 Ti(x), i=0,1,...K &.

When the test functions are unknown, we suppose that we can find

a sequence of functions Tjn(xn) which satisfy
2 2 .
Ep(|Ton(X, Xn_15Xn5%n) - T5(X) [7) = 7gn »J=0,1,... K (1.2.40)

We then define the sequence of decision functions:

tjn(xl...xn) 1if Tjn(xl...xn;xn) 2 Tyn(x,...Xp5%p), 81l 1,

O otherwise. (1.2.41)

With fj(xl,x ..,xn) denoting the joint density function of the

27"

n observations given that the n-th A\, is An=xjn, the expected risk is

K n
R(tn;ﬁ) = l-}: P, _/ﬂ.“ thjn(xl...xn)fj(xl...xn)dxi..dxn.
J=o

The difference in risks is expressed as

K n
O ® R(tn,n) - R(tg,n = }: jof _/1...jr(tBj(xn) - tjn(xl...xn)).
Jj=0

fj(xl...xn)dxi...dxn (1.2.42)
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K

tuml

Clearly, pjfj(xl,...,xn) s 2: pifi(xl,...xn) = f(xl,...xn), and hence,

(42) is dominated by =0
K

0 £ R(tp,m - R(tp,n) = Z Bpltps(Xn) - toj(Xg.- Xy | (1.2.43)
Jj=0

Let the subscript i in the following expressions read "for all i,"
and the subscript k mean "for some k." The joint event ((Tjn(xl"'xn3
.. Xp3%y) for all i),Tj(xn) < Typ(x,) for some k) is writ-
ten as (Tjn;Z Tin’ Tj < Tk)'

The expectation inside the summation of (L43) becomes

By [tpy(%) - tj:n(xl...xn)l = Pr {Tjn 2 Ty, Ty < Ty }
P
+ Pr{ Tin < TepTy 2 Ti}

Consider the first probability expression on the right side. Since

the event (T2 Tyy,Ty < Ty) is included in the event (Tj, = Ty, Ty

Jn J

< Tk)> the first probability expression is dominated by

- = - < .
Pr{ Tjn Tkn. = OyTJ- Tk = ij }
h - - m - m
+ Pr% Tip - Tyn 205 - €5 <Ty - T < } ,

where €3k is an arbitrary constant. If (Tjn - T, 20) and ((Tj- T,)

[}

v

= - ejk)then the expression (lTjn- Tyn- Tj + Tk | éejk) holds. There-

fore, it follows that



[ o o - - - -

- = - = -
Pr {Tjn Tkn 0, Tj Tk ejk %
Defining Sljk = Pr.{-ejk < T‘j - T <O } , we have Pr Tjn - Tkn =

0, - ejk< Tj - T < O} dominated by Sljk in analogy to the previous

development. We then have the bound

=
Pr{ Tin & Ti0Ty < T, 'L
s Pr{ ITJ-n - Ty = Ty + Tyl oz €5k F + 81y

which, in view of (40) and the Minkowski ineguality, can be dominated

2
(7sn + Ykn) 5
Pr <E‘jn 2 Tin’Tj < Tl} s \V/gn kn * 1. (1.2.4Y4)
2

by

Similarly, we cen show that

} (7sn * 7kw)2 4+ &

2
ij

Combining these bounds, we obtain

2
Fﬁn!tBj(Xn) } tJn(Xl"“XnH = 2(7jn : 7kn) * 6J'k((sjk)’
2
€5k

8y = Pr{ |Tj(xrn) - Tlx ) | < ejk} :

where
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In analogy to Theorem 1.2.2, we have

Corollary 1.2.3: We observe the sequence of stationary dependent ran-

dom variables Xg,4= 1,2,...,with the marginal density function f(x) =
k
PN pjfj(x). Assume that the sequences of test functions{'rjn(xl,xe,...

J=0
xn;xn)%', j=0,1,...X, satisfy

-1 2 j=0,1,...K (1.2.145)

=
En(Tjn = Ty) = 7ia

and that lim 7.

J =o, j=0,l;...K.
n-»o

n

At the n-th decision, define the (K+1) decision functions by

-’X

tj(x o) 1 if Tjn(xl"'xn5xn) 2 Tin(xl...xn;xn), all i

1

0 otherwise, j=0,1,2,...K.

Then, if pifi(x)£a.e.x, i=0,1...K, the empirical risk converges to the
risk of the one-stage procedure. If the density functions fj(x), j=0,
1,...K, are linearly independent and analytic functions of x, the dif-

ference in risks at the n-th decision is bounded by

€ 2

S s v
0 = R(tp,n) - Rltgm) = Z T T + Balepd
J=o Jk

where again Bjk can be made arbitrarily small.

1.2d Convergence of The Empirical Procedure For Unbounded Loss Functions

The fact that the loss function ((2)) is bounded has been used to
considerable advantage in obtaining the above bounds. Situations where
L{t(x),A\) may not be abounded function of A occur when we let A(the

state of nature) take on a continuum of values. We assume that A is a
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random variasble drawn from some general papsmeter space A. With A dis-
tributed according to the distribution a()), the density function of

the observation is written

f(x) = ff}\(x)da(x). (1.2.47)

The hypothesis test we consider is one in which we infer from the
observation X whether AeA (hypothesis Hy) or AeA-A (hypothesis Hj).
To obtain the (one-stage) test procedure, we again let t(x) = O,

1, depending on whether we believe Hy or B is in effect. Defining

b(A) = L(0,\) - L(1,A) (1.2.48)
and
T(x) = fb(x)f)\(x)da()\), (1.2.49)
A

the risk incurred is a minimum if we choose

tp(x) = 1if T(x) 20
= 0 otherwise.l
The risk is then given by
R(tg,0) = fL(O,?\)da(?\) -fT(x)"dx (1.2.50)
A

lgee Robbins [30], section 3, for the details.




30

which we can also write as

R(tg@) = [L (0,Nax(A) - xxﬁa(x)b(i}. (1.2.51)

)\
When the test function T(x) is not known, we define a (two-valued)
decision function tn(xl...xn) as before. The overall (empirical) risk

is

R(ty,) = fL(O,?\)dOt(?x) - E_m\n&(xl...xn)b(xn)} (1.2.52)
A

and the difference in risks can be written as

0 = R(ty,®) - R(tp,a)

= En)\n/[;(_xn) (tB(Xn) = tn\(x_n)z} . (1.2.53)
If we assume
sz(?\)da()\) Sec< (1.2.54)

then by the Schwarz inequality it follows that

o= R(tn,a) - R(tp,0)

s GEn{E;B(xn) - tn(xf,..xn)E}’>l(2 (1.2.55)

The value of the expectation in (55) is identical to the value of
expectation appearing in (25). Hence, we obtain

Corollary 1.2.4: Assume there exists a seguence of test functions which

satisfies
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2 2
E{I’(X. xnxn) T(X,) }.S. 7n -

Then, if the decision function t.(x,) is defined as

to(xy) 1if Tp(xy) 20

O otherwise,

end if (54) holds, the difference in risks at the n-th stage is domi-

nated by

= R(tp,®) - R(tp,)

2
< M2y, s(e)) 2. (1.2.56)

2

Observe that the bound is of order ¥y, while the previous bounds on
the risk were of order 7&5' This is a direct result of the boundedness
of b(A) for the minimum probability of error criterion and the fact that
the sequence{:};}>may be dependent.

We have assumed throughout that each decision is based on a single

observation. The extension of the above results to more than one sample

per decision is straightforward.

1.3 LITERATURE SURVEY AND SCOPE OF THE PRESENT STUDY

We have investigated the convergence of a particular empirical pro-
cedure to what we have called the optimum one-stage procedure. By

dominating the mean-square error,
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A
En  (Tn(X,...XpiXp - N(Xp)Z® 5 %%,

we are able to bound the rate of convergence of the empirical risk.
Hence, the central problem is to find a sequence of estimates fn(xl,...
xn;xn) which is consistent, i.e., 1lim n=0. This is our major concern.
-0
Consider the two hypotheses problem with a minimum probability
of error criterion. For this case, T(x):plfl(x)-pofo(x). Assume that
P, is known and that the densities fo(x) and fl(x) are unknown. To

estimate T(x), a natural procedure would be to first estimate the den-

sities and then take

T (x) - pﬁl (0) - p L () (1.3.1)

as the estimate of the test function for the n-th decision. If %ln

A
and %on are consistent estimates then the sequence Tn(x) will also be
consistent. The manner in which the estimates are obtained depends on

whether "learning" samples are available.

If one can classify an observation with probability one, it is
called a learning sample. Then, if the observation is known to come
from, say, hypothesis H,, we would use it to update our estimate of

fo(x). This type of operation has sometimes been called supervised

1
learning or learning with a teacher.

lIn the context of communication problems, learning samples are pro-

vided by periodically injecting a known fixed sequence into the sequence

of information bearing signals, i.e., channel sounding signals. See
[35,36]. Learning samples of a different nature occur in problems such
as statistical weather prediction. Based on some observational dats,
an inference is made about the future weather. At some later time we
find out if the inference was correct. This knowledge would then be
used to form better inference procedures.
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When learning samples are not available, the problem is more dif-
ficult. Since we never know from which population the observation is
drawn, we can not directly estimate the desired quantities. One pos-
sible procedure 1s to estimate the overall density function; f(x) =
pofo(x) + pafi(x), and then attempt to extract from this estimate the
parts that are unknown and that are needed to form the estimate of the
test function. This mode of operation has been called nonsupervised
learning or learning without a teacher. We remark that learning in
the nonsupervised mode is not always possible.

When the seguence of observations is independent and if, with
either of the above procedures, we obtain consistent estimates of the
test function, then, these procedures are asymptotically optimal.

This is not to say that the probability of error is minimized at each
stage. This, of course, depends on what part of fi(x)is unknown, how
it is estimated and subsequently used to form the estimate of the test

function.

1.3a Literature Survey

The learning procedures most frequently investigated are those

in which a set of parameter wvectors, © i=l,...k, is to be estimated

i’

2When the observations are dependent; the procedures are in no way op-
timum. Presumably, they are reasonable procedures to follow, especially
when the exact nature of the dependency on the obserwvations in not
specified.
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from the statistically related observation vectors gz,ﬂzl,...n.l Each

parameter (or pattern class) 9; 1is associated with a particular hypoth-
esis H; and could represent samples of a signal which is buried in noise.
The density function of the observation given that H; is active is writ-

ten as fe-

(Ei), and the overall density function of the observation
N ,

becomes

K
£(x;) = Z Po. To (%) (1.3.2)

i=1
Furthermore, it is assumed that the set of patterns is initially chosen
from a known a prior distribution, pii( ), and then held fixed for the
experiment. The statistical inference problem is to decide which hy-
pothesis (pattern class) is in effect for a particular observation X.
The criterion used is the minimization of the total probability of er-
ror.

Within this framework, a number of authors (e.g.,[1,5,20,21]) have
investigated optimum test procedures when learning samples are avail-
able. Let x, represent the sequence of learning samples. Then, given
the observation X, the optimum decision rule is to compute the a pos-

teriori conditional densities

LVectors are denoted by the _notation.
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P{QJ|Z)X};} »Jd=1l,...K (135)

and announce the QJ for which (3) is a maximum.

Braverman(5], assumes that the sejuence of learning samples x=
Zkl’gke"" is independent and that the learning samples of one class
impart no information concerning the patterns of another class. Let-

ting ij denote the set of learning samples of the Jj-th class, (3) be-

comes

P @j lg,xkj } _ »d=1,...K.

He takes the density function fgj(i) as gaussian (fgj(§)=g(§-gj)) and
the a priori densities PEJ( ), j=1,...K. also as gaussian with unknown
means and known covariance. The optimum procedure is then to use the
learning samples to estimate the means of each class and use these
estimates in the computation of the a posteriori probabilities. For
the case of two hypotheses, he shows that the difference between the
error probability of the above procedure and the error probability in
the case the pattemn;@man value; are known is approximately inversely
rroportional to the number of learning samples.

Keehn[21], extends the work of Braverman by taking both the mean
vector and covariance matrix of ng( ) as unknown.

Scudder[39,40], also takes the noise and a priori distributions

as independent gaussian and investigates the problems encountered when

learning samples are not available. The optimum test procedure now
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requires an exponentially growing memory. He then looks at a fixed
¥
‘ ' memory technigue similar to the procedure used when learning samples

l are available, but now, learning takes place on the basis of previous

decisions which are never known with certainty to be correct.

The problem of when the optimum test procedure, with or without

learning samples, requires a growing memory is discussed in a paper

by Spragins[42]. The optimum test procedure (an application of Bayes'
rule conditioned on an increasing number of observations) will be of
fixed memory if and only if the sequence of (independent) observations
admitsa sufficient statistic of fixed dimension. The existence of the
sufficient statistic is seen to imply the existence of an a priori
distribution ng( ) which has a "reproducing" property. Thus, by choos-
ing an a priori distribution which has the reproducing property, a num-
ber of authors (e.g.[5,21]) are able to obtain optimum fixed memory
procedures.

Hancock and Patrick[17] provide for a general formulation of the
learning problem by focusing attention on the overall distribution as
given by (2). An important contribution of this study is the deter-
mination of when sufficient amounts of a priori information exists for
a learning procedure to converge. When little a priori information is
known, they apply histogram techniques to a class of nonsupervisory
problems. When the functional form of the overall density is known,

they investigate estimates of the parameters 93 which characterize the
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overall distribution or, as they call it, the mixture. The estimates
are shown to be consistent thus leading to an asymptotically optimal
test procedure.

Somewhat related, but less general in formulation, is the work
of Cooper and Cooper[9]. They consider the two-category problem with
particular emphasis on the case where the overall density is the sum
of two gaussian densities. Taking each hypothesis equiprobable, they
discuss different estimates of the unknown means which are then used
to form an estimate of the test function. They extend the (nonsuper-
visory) results to multivariate gaussian densities by estimating the
parameters which characterize the optimum partition (i.e., a hyper-
plane) of the sample space. Also discussed is the case where the
arbitrary densities of the two equiprobable hypotheses differ only in
a location parameter.

A departure in the above formulation is made by Robbins[29-31] and
his associates [19,37], They consider only one a priori distribution,
PQ( )=p(6), and take the distribution as unknown. Here, the inference
problem is to decide whether 6 is contained is some set A or its com-
plement. Since the density function of an observation under either
hypothesis is the same, f(x); fo(x)dp(6) , every observation can be con-
sidered a learning sample even though these observations are never clas-
sified correctly with probability one. Their main effort is directed

toward showing that the empirical procedures are asymptotically optimal
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for a variety of hypotheis testing (and estimation) problems.

All of the above authors take sequences of independent observations.
Tainiter[44] extends one aspect of the work of Robbins to M-dependent
observations and Raviv([28] takes the "patterns” to be a Markov sequence
with the transition probability matrix initially unknown.

Special formulations and learning procedures appropriate to certain
communication problems are given by Glaser[15], Price and Green[27] and
Sebestyen([41]. A bibliography emphasising the supervised mode of learn-
ing is given in [2]. A discussion of most of the approaches to non-

supervised learning is given in the recent paper by Spragins[43].

1.3b Scope of the Present Study

The present study is closest, in spirit, to the work of Robbins.
The problems we will consider are those in which the "patterns" are
random variables. Thus, if the same pattern class or hypothesis is
active in succeeding intervals, this only means that the distributions
from which they are drawn are the same. It is these a priori distri-
butions which we will take as unknown.

In particular, we shall consider a class of problems where the

marginal density function of a single observation can be written as

f(x) = jpg(x-z;c)da(z), (1.3.4)

with a corresponding vector equation for multidimensional observations.

g(x;0) denotes the gaussian density function with standard deviation o.



39

By suitably interpreting a(2z), we can include all the problems we are
interested in. We give the following as examples.

Let u(t) be the unit step function and define

K
az) = ) ppulzyy. (1.3.5)
i=1
Then, f(x) becomes
K
f(x) = ZPig(x-yi;o)- (1.3.6)
i=1

This represents the density function of the observation where one of K
signals is transmitted with gaussian noise added to the message. The
signals represent the values the random variable can assume.

A generalization of (5) is to take

K
ofz) = Zpi‘fu(z-y)dﬁi(y) (1.3.7)
i=1

where Bi(y) represents one of K different distributions. f(x) is then

given by

K
f(X) = Z‘ Pif g(x"y;O)dBi(Y)= (158)
i=1

Here the problem would be one of testing between K composite hypotheses
with noise-like signals.

Letting u(z-y) = u(z-s;(t,y)) in (7) gives

K
f(x) = z pifg(x-si(t,z);o)dﬁi(y) (1.3.9)
i=1
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This has the interpretation as the overall density function of K com-

posite hypotheses with the i-th hypothesis representing the s, signal

i
being transmitted. The a priori probability of this transmission is
Pi. The notation si(t,x) is taken to mean that the signal sj which,
for example, is time sampled at t, is distorted by the random vector

Y.

The difficulties we shall encounter are not in attempting to pro-
cess the observations is some optimal fashion. We have already agreed
to consider a learning procedure which, at best, converges to the opti-
mum one-stage procedure; this empirical procedure being asymptotically
optimum if the observations are independent. Our difficulties will
stem from the fact that the a priori distribution B(y) is teken as
completely unknown as opposed to assuming some known functional form
with a finite set of unknown parameters.l

The empirical procedure we have outlined is one of estimating the
densities fj(x) when learning samples are available, and, initially,
the overall density f(x) =§.pifi(_ x) when operating in the nonsupervisory
mode. Much of this study deals with estimating f(x) as given by (4),

and establishing bounds on the mean-square error in the estimate.

There is one exception. We also consider (6) with the a priori pro-
babilities unknown.
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In Chapter 2 we consider different methods of estimating f(x).
Of particular interest is an eigenfunction representation (sectidn 2.5)
for f(x) which we obtain by solving an eigenfunction problem associated
with equation (4). Chapter ? extends the results to estimating the
k-variate density function f(xl...xk).

In Chapter 4, we apply our results to some problems in communication
theory. Section 4.1 considers transmission through a general, stationary,
random channel when learning samples are available. This problem serves
to relate the results of section 1.2 on the convergence of the empirical
procedure with our results on density estimation. It also illustrates
when we can expect to obtain solutions to the nonsupervisory problem.

The remaining applications emphasize learning in the nonsupervisory mode.
In section 4.2 we consider the problem of transmission of known signals
with unknown a priori probsbilities and in section 4.3 we discuss the
problem of transmission through a random multiplicative channel. In sec-
tion 4.4 we consider a problem with an unbounded loss function.

A summary of this study is given in Chapter 5.




CHAFPIER 2

ESTIMATING THE DENSITY FUNCTION OF OBSERVATIONS—UNIVARIATE CASE

2.1 INTRODUCTION

As discussed in the previous chapter, one approach to finding a con-
vergent sequence of test functions is to first obtain a convergent sequence
of estimates for the unknown density functions. These estimates are then
used to form a test function, the structure of which is identical to the
test function one would use if all distributions were known. Our main
concern in this chapter is obtaining consistent estimates of the uni-
variate density function of the observations. By consistent estimates

we will mean estimates which converge in mean-square in the sense of

13 . A ,
niﬁ; E {((£f(x) —an(Xl,Xg,ao,Xn;x))2} = 0 for every X (2.1.1)
or
1im : = 2
- M4 ’ = L2
o E ((£(x,) fn(xlg(.z,mxn,xn)) } 0. (2.1.2)

Equation (1), obviously, is concerned with convergence to the constant
£{x), while in (2) we have convergence to a random varisble. It is (2)
which we need to demonstrate convergence of the empirical procedure for

the case of dependent samples.l Since, for two of the methods which we

LThe convergence 1in (1) is essentially that required for the case of in-
dependent samples. See (1.2.16).

Lo
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use to estimate f(x), there is little difference between consistency in
the sense of (1) and (2), we will evaluate bounds for both types of con-
vergence.

To compare our results with previous work in the area of density
estimation, we will also consider a global measure of the error, the mean

integrated square error,

+oo
2 2
Ef (£(x) - £ (X1,X2,...X5%)) ax (2.1.3)
-0

The basic problem which we want to discuss is as follows. We are
given the stationary sequence of identically distributed random variables
(observations), Xy = Ni +2;, i=1,2,..., where N; 1s a sample from a
stationary gaussian process and Zi is a sample from an unknown random
process. The samples may be time samples or any other linear processing
of the received waveform which preserves the gaussian nature of the noise.

With Ni independent of Zj, the univariate density function of the obser-

vation Xi is
+ 00

P(x) = fg<x-z; o)aalz) (2.1.4)

- ®
where by g(x-y;0) we mean the gaussian density function with mean value
y and standard deviation ¢. We want to take the gaussian noise samples
as correlated and also consider a dependency on the Z; sequence which
will be specified later.

In the next section we consider the empirical distribution function

as an estimate of the cumulative distribution of the observations. We
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investigate the mean-square error and obtain a bound on the rate of con-
vergence, The results of this section are then applied to the problem
of estimating the density function, for which we give three techniques.

The first method of estimating f(x), section 2.3, is analogous %o
the technique used in estimating a spectral density. For this method,
we restrict our study of convergence to those as specified by equations
(1) and (3). This method of estimation requires a minimum of assumptions
to guarantee convergence.

In section 2.4 we consider an orthogonal representation for f(x)
and investigate all three of the above modes of convergence.

The method in section 2.5 is analogous to the technique generally
used to solve a deterministic integral equation. To the best of our
knowledge, this approach has not appeared in the literature.

The results which we will need for the applications of the empirical
Bayes procedure are contained in Corollaries 2.4.1, 2.5.1, and section
2.6. Section 2.6 considers a special form of a(z); the case where ofz)
contains a finite set of unknown parameters which enter linearly into
f(x)o

A gummary of the chapter and generalizations are given in section

o
N

2.2 THE EMPIRICAL DISTRIBUTION FUNCTION

We want to consider the empirical distribution function as an estimate

of the true distribution. For the case of independent observations, 1t



is easy to see that this estimate is consistent with the mean-square error
going to zero at a rate l/ng For the case of dependent samples, our main
interest will be a characterization of the nature of the dependency on
the samples, or the underlying random process, for which we can still
guarantee consistency with a specified rate of convergence.

The sequence of observations, Xi,Xz,...X, are identically distributed
(not necessarily independent) random veriables. Xi is a sample from a
stationary process which is composed of the sum of a gaussian process
with an autocorrelation function R(t), and another stationary processes

Z(t); Xy = Ny + Zy. With Ny and Z; independent, the density function

of the observation is given by

+ 0

flx) = \/ﬁ g(x-z;0)da(z) , (2.2.1)

- 00

with the corresponding distribution function

X

F(x) = f f(y)dy . (2.2.2)

-

The empirical distribution function of the observations i1s defined

F(x) = % (number of X; < x, i=1,2,...n).

Let Uz(Xz) = 1 if XZ < x, and equal zero otherwise. Fn(x) is then written

as
n

F(x) = % y Up(x,) . (2.2.3)

£=1
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With E denoting the mathematical expectation, we have
E(Fn(x)) = F(x) . (2.2.4)

Fn(x) is an unbiased estimate of the distribution whether or not the obser-
vations are independent.
The mean-square error can be written in terms of a bias and variance

contribution:

E(F(x) - Fp(x)f = (B(F(x) - F (x)))"

2

+

E(Fp(x) - E(Fu(x))) (2.2.5)

Since the first term is zero to investigate consistency we need only con-
sider the variance of the estimate.

The second moment is given by

(Cn
A 1 2
E(F(x)) = FE‘L@Z U,(x,)
=1
& n

1l
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™
= ‘_'Hl + g_ Z Z F (X,X)
n n® £
=1 m=f+1

We have defined Fzm(x,x) as the joint probability that the samples from

the £ and m intervals are less than or equal to x,l

1
The subscripts £ and m will always mean the £ and m observations (decis-
ions, intervals, etc...) when used in a double sum.
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Flm(x,x) = Pr (X, <x, X; <x) = Fm_l(x,x) . (2.2.7)

We want to display the effect of the dependency of the observations on

the variance of Fy(x). Add (1-1/n)F?(x) to (6) and subtract its equiva-

lent

The variance is

) (gl - Fl0) (2.2.8)

With independent observations the second expression on the right side of
(8) is zero—the variance reduces to the standard result.
Assume, for the moment, that the sequence of random varisbles Z;

are independent. Then, the second-order distribution is

X X
Fpoo(x,x) = /\ u/\J[ JF g2(y1-21,y2-22;0, Dm_l)da(zl)da(Za)dY1:dY2:

-0 =™ Z7 22

(2.2.9)
where gz(nl,ng;c,pm_l) 1s the bivariate gaussian density function with
the random varisbles N, and Ny having the same standard deviation o and

a correlation coefficient py_, = R(m-l)/R(O).l The univariate distribution

11f we had time samples, pp-y=R(m-£)T)/R(0), where T is the time between
succeeding samples. We shall take T = 1. The gaussian random variables
have the same standard deviation since the waveform in each interval is
identically processed.
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a(zi) is independent of the subscripts £ or m because of the assumed sta-
tionarity.
It will be convenient to denote the expression in the double summation

of (8) by B,_, ,

~ 2
Dm-l = Fm_l(x,x) - F (x)

X X

= J[‘ Jf Jf JF[QE(Yl‘Zl:y2'22§0;pm_l)‘g(YI'Zl50)g(Y2‘Z250)]da(zl)

-0 =0 Zj Zo

da(zz)dy, dys (2.2.10)

and consider the resulting inner double integrals

X X
JF JF lea(y1-21,v2-2230,0, _,)-e(y1-2150)e(ya-2250) 1dy; dy= . (2.2.11)
-0 =00

The bivariate gaussian density is expressed in terms of Mehler's
formula. From Appendix A, (A.20), with the requirement that Ipm_zl <1,

)] f m, we have:

g2(Yl'Zl)y2'Z250;pm_£) =

2 A
o(Egiezte) ) ety wam) g, (tezta
o o) jt J ) J o
J=0 (2.2.12)

The Hej(y/c) are the Hermite polynomials orthogonal with respect to the

1 .
gaussian weight g(y/O). Observe that this is not an orthogonal expansion

lWe use the notation g(y/d) for the gaussian density (with standard devia-
tion 0) when dealing with the corresponding polynomials. g(y/o) is iden-
tical to g(y;o) which is the notation we generally use for the gaussian
density.

. We interchange the Yy and z integrations((lO) is absolutely integrable)

[
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in the usual sense. The polynomials are defined in such a way that the
1

crthogonal functions are given by~g(y) Hej(y).

Substitute (12) for the bivariate density in (11). The first term
of the series cancels leaving

-Zl -2 -7 -2
Z ff He | HLEL (2 He ;(YE=22)g(¥28222)ay; dyz . (2.2.13)
-00 =00

With !pm_zl < 1, it is easy to justify the above inversion of summation

2
and integrations. The integrals are then dominated using Schwarz's in-

equality and the orthogonality relation for the Hermite polynomials (A.10):

X
fg(u) He . (£=2)dy
ol J' o
+00 X-—Z_ +oo X-—Z . u 1/2
< fg(c)dyfg(o)Hej(g)dy

< VI (2.2.14)

Hence, (13) is bounded by

@

m-1' 1 | |

j=1 = iPpagl

Dm-l is also bounded by the same quantity,

Dm£< f f 'pm’” dofz1)doz2) = -—Ip-“-lil-—, (2.2.15)

m-{ 1 - log-gl

Lsee Appendix A, section A.1l.
2See Appendix A, Lemma A.l,
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Notice that (15) would still bea valid bound on Dy.y if the integrand
in (10) were replaced by its sbsolute value. We shall use this later.
Combining (8) and (15), the variance of the empirical distribution

function is dominated by

V(E,(x) = K2 (1)) f2 ) ). T

n
£=1 m=f+1
S F(_XZ (l—F(X)) +§§ z (n-'r) __E!’l_ R (2.,2«.16)
n n e 1 - IOT{

with the second expression following from the stationarity and with v=m-{.
Convergence in quadratic mean requires that V(Fn(x)) +0as n+*w,
For this, it is sufficient to assume that the sutocorrelation function

of the gaussian noise process satisfies
R(t) >0 as 1+, (2.2.17)

Condition (17) excludes the possibility of jumps in the spectrum of
the noise process. It then follows (Logve [24], p. 202) that
p* = max !pTI < 1 . (292018)
T>1

Using this fact, the second part of (16) is mejorized by

n | n
1 Or i 2 1
) (o) =2 < LY Je . (2.2.19)
1 - n
T=1

'I\)

n

n
1
Since - » 0, it follows that the sequence of arithmetic means, " zz»
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tends to zero as n + « (Hobson [18], p. 7).

Notice also that (18) is sufficient for the validity of the Mehler

formula.
With the first part of (16) dominated by 1/n, we have

Theorem 2.2.1: Given the sequence of identically distributed random vari-

ables of the form X; = Ny + Z4, with the univariate density function given

by |
+ o0

f(x) = /ﬂ g(x-z;0) doz) .
-00
Assume that
i) the sequence of random variables {Zi] is independent

ii) the autocorrelation function of the gaussian noise satisfies ‘

R(t) *0 &as T + o

Then, the empirical distribution function is a consistent estimate of
F(x). Upon applying the Chebyshev inequality, and since V(F (x)) + O
uniformly in x, we -also have uniform convergence in probability: as
n » o and for arbitrary e,Pr{!Fn(x)~F(x)E>>€} + 0, uniformly in x.t
In order tc obtain & bound for the rate of convergence we need to
. . . : 2
specify the manner in which R(r) - 0. For example, assume that R(T)

is bounded by

lWe note that the hypothesis of the theorem 1s sufficient to ensure con-
vergence with probability one. This will be discussed at the end of the
section.

2The bounds given belcw are for time samples, with the time between suc-
ceeding samples taken as T = 1.
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IR(r)| < B/ (2.2.20)

for |7 > By where O0<® <1l. Then, it is not difficult to obtain
an integral upper bound for the arithmetic mean:

n

1 n _1 [R(T)] By 1
- Z IpTl = z = < =+ EESCEE (2.2.21)
T=1

T=1

In the sequel, we will designate (20) as condition A.

Alternatively, we could make the assumption that

[o0]

f |R(t)|at < » . (2.2.22)

e}

This implies that the spectrum is absolutely continuous. Then, by the
Riemann-Lebesgue lemma we have R(t) - O and t > «». Assuming further that

R(t) is monotonically decreasing for ltl > By, an integral upper bound is

given by
n
1 Bz
= Z lpTl < T, (2.2.23)
T=1
where we have set
0
Bx = Bl+§ f |R(t)|at . (2.2.24)
By

The assumption of monotonicity can be dropped if the autocorrelation pos-

sesses a derivative which is integrable. Then, we replace Bz in (23) vy

0

Bp = Gi? f(lR(t)l + |[R'(t)])at . (2.2.25)

o}



This follows from the Euler-Maclaurin summation formula.
In the sequel, equation (23) will be designated as condition B,

with the constant Bz given either by (24) or (25).

Corollary 2.2.1: Under the hypotheses of Theorem 2.2.1 and with R(%)

satisfying condition A, from (16) and (19), the veriance of the empirical

distribution function is dominated by

WFL(x)) < =+ 1—;— @— + (—l—;-);@ : (2.2.26)

Alternatively, if R(T) satisfies condition B, the variance 1s dominated

by

W) s 7 (20 55 )- (2.2.27)

Note that the bound in (27) gives the same rate of convergence &s
in the case of independent samples.

As easy extension of Theorem 2.2.1, and one of practical importance,
can be obtained by replacing the independence assumption on the Z random
varigbles by one of M-dependence.

Definition: The random variables Z, and Zy are said to be M-dependent
if the variables Z, and Z, are independent for lm-lfzbd. In terms of

the distributions, we have

amwz(zlfz2> = ofz1) afzz2) for !m—l! > M,

where
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%_1(21;22) = Pr {Zz < zi1, Zm < z2}

The extension is carried out by noting that the independence of ZE

and Z  was first used in (9). In general, this equation ncw becomes

x ¥ "
Fpoog(%,x) =k/ﬁ\jp Jf\/ﬁ82(Y1-21;Y2-225U;Dm_z)dam_z(Zl;Zz)dY1 dyz -

-00 =0 Z3] Zp
(2.2.28)

2
We use (28) in the expression Fm_z(x,x)-F (x), add and subtract (9), and
group the terms so as to display the Z dependence. Designating the result-
ing expression by Dm-l’ we obtain

X X
Dy-p = u/\u/‘ u/--f{gz(yl-zl,ya-zE;O,Dm_l)-g(yl—zlsG)g(y2-22;0)]
- 00

-0 Z1 Z2

do(z1)da( z2)dy1 dye

X x
[ ] etsimanvemzesonn, )@, (on,20) -l 22)a0(22))

-0 -0 Z1 Z2
(

dy1 dyz 2.2.29)

The first term on the right is the same as before and is bounded by (15).

The second expression is easily dominated by:

N
=

< 2 for ll-ml'

\%
=

and D = 0 for [!—ml >

Using these bounds and the previous results we have

Corollary 2.2.2: Given the hypotheses of Theorem 2.2.1 but with con-

dition i) replaced by one of M-dependence. Then, the variance satisfies
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lim E(Fy(x) - F(x))° = lim V(F (x)) = O,

n-+co n-*o

uniformly in x. In addition, if R(t) satisfies condition A, we have the

bound
1+4(M-1) 2 By 1
V(Fph(x)) < " * o < 2t T ) (2.2.30)

With R(t) satisfying condition B, the variance is dominated by

2 B

V(Fp(x)) < = (1 + b(M-1) +
1-px

) . (2.2.31)

We now replace the M-dependence assumption with an ergodic
requirement.

Suppose that the stationary sequence {Z;} is ergodic. Now, the weak-
est condition we have imposed on the correlation function of the gaussian
process (R(t) + 0 as t + ») implies that the spectrum of the process is
continuous. This, in turn, is a known necessary and sufficient condition
for the gaussian process to be ergodic.l Since N; and Zi are independent
it follows that X; = Nj + Zi is an ergodic sequence.

We have previously defined the random variable Uy as: Uz(Xz) =1

n
2
if Xy < x, and = O otherwise. Since F(x) = = z§1 U,(X,) end B(UX,))" =

E(Uyp(X,)) = F(x) < 1, we can use the Mean Ergodic Theorem([16], p. 16) to get:

lim E(|F (X1,%e, .« X %) - F(x)|3) =0 (2.2.32)
N0

~
for every x. Hence, we always have mean-square convergence to some F(x).

In addition, with the (X} sequence ergodic, we have from Birkhoff's ergodic

lGrenander, U., "Stochastic Processes and Statistical Inference,”" Arkiv
fur Matematik, vol. 17, 1950, pp. 195-277.
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theorem ([16], p. 18):

lim Fn(xl,Xg,...,Xn;x) = B(F (Xy...X ;x) = F(x) (2.2.33)
N

with probability one. Since Fn(x) converges with probability one to

F(x) and in mean-square to E(x), it follows that F(x) = F(x) with proba-
bility one for every x. Thus, convergence of Fn(x) to the true distribu-
tion function is ensured under an ergodic condition on the {Zl} sequence
and the above condition on the autocorrelation function of the gaussian
process. What we do not have is a measure of how fast the convergence
takes place. We now want to find what conditions are required to charac-
terize a rate of convergence. In doing this, we will also directly
verify that g(x) = F(x) when the Z process is ergodic.

Consider the expression for V(F,(x)) in the case the Z; are depen-

dent variables:
F
WEg(x)) = BEL (1 - R(0)
n n
2
= Z X Pa-t
n. )
1=1 m=L+1

Fx) (1 - F(x))

]

n
n
2
+ ;5 EZ (n-1) D_ (2.2.16)
T=1

From equation (29), D, is the sum of two terms. The first part of D,

has already been bounded by (15):
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n
2\
- ;5 2: (n-1) DT}E . (2.2.34)
T=2]

D_ designates the second term of D,
a2

X X
D, . =fff f g2(y1-21,¥2-2259,0 ) [dx_(21,22)-da(z1)da( z2) |dy1dyz -
-00 =00 Z3 Z3

(2.2.35)

Perform the y integrations first and let Gz denote the second-order

gaussian distribution function.

D . =ff (Ga(x-21,%-22;7,0 ) -5(x-2150)G{x-22;0)]

Z1 22

(da (21,22)-do(z;)da(zz2))
+f fG(X—Zl;G)\}(X-Zg;U) [dOﬁT(Zl‘,Zg)-da(Zl)da(Zg)]u (2.2.36)
z21 22

We have added and subtracted the quantity

X X
Hx-2130)3x-22;09) fﬂfg(y~21;0)dyfg(y-22;ﬁ)dy
= 00 = 00

in the integrand.
Using our previocus results (see (13)-(15)), we easily dominate the
first expression on the right side of (36) by (leTl/(l-!O,!))o The bound

fcr the variance becomes:

M(F(x)) < B2 (1 - R())
6 - lo,!
TE L ) o |
n Y 1i- |pTl
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n
+ EE (n-T)\jF u/‘G(x-Zl;G)G(X-ZQ;G) [daT(zl;ZZ)'
T=1 21 22
do(zy)da(zz2)]. (2.2.37)

Aside from the constant 6, the second expression is the same as (16).
Hence, if R(t) - 0 as t + o, this term tends to zero. We now show that
the ergodic condition on the [Z!) sequence is sufficient to have the third
expression of (37) go to zero.

For the stationary sequence [Zn}, n = O,f 1, t 2,..., @ condition

equivalent to ergodicity (Rosenblatt [34], p. 110) is:

> 0o

Illim T Z NENT'A) = R(A)E(B) , (2.2.38)
J=1

where A and B are any two events defined on the underlying probability
space. P(A) denotes the probability of the set A and T is the unit shift
transformation.

We take the elementary points of the probability space as
w = (...,w_l,wo,wl,...), where the w; are real numbers and define the
vandom variable Zn(w) = o . Equation (38) holds for any measurable set
defined on the probability spsce. In particular, with A = {wlznl(w) <z},

T JA is the set
T

(012, (1°0) <z

{wlznlq-j(w) <z} .

let B = [wlzne(w) < zo}. The stationarity assumption gives:

P(A) az;)

aznl(zl)

P(B) o z2)

azng(ZZ)
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P(BNTYa) = Pr(Zy (w) < z2, Zpn,+jw) < zp) = an1+j—no(zl’22) .

Define a second-order distribution function as

n
(Zl,Ze) - l (Zl 22) ;
Bn,nling S~ anl-né+j ‘ (2.2,39)
J=1
Then, equation (38) implies
oo (z1,22) L 00 ofga) (2.2.10)

n-+ o B].'l‘,l'l‘]_"l'lg

for every z; and zs and every n; and ns.
Returning to the variance expression, designate the double integra-

tion in (37) by D_
a2

ST,E = ffG(x-zl;O) H x-22;0) [da'r(zl‘,ZQ)-da(Zl)dCt(Zg)] . (2.2.41)

21 22

Define the partial sum s, by

n
= X (n--) D . 2o-1) 4 Q (2.2.42)

T2 n2 n-1
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Consider the arithmetic mean of the partial sums,

n

s
n 1 )
n /“\]ﬂ Hx-z1370Hx-2257) F é faor (z1,22) - dozy)da(zz)]
) ) ! ‘

zZ1 22 Tl .
(2.2.43)

From the ergodic hypothesis and equations (38)-(4C), as n + «, we have

n

) o(21.22) => alzr) ofz2)

S

for every z; and zz. Applying the Helly-Bray Theorem (Loéve, [24], p.
183), we get that sn/n +C as n +w, It then follcws (see the discussion
belcw (19)) that the arithmeti~ mean of the partial Cesaro sums Sn_l/n - C.
Henze, (L42) and V(Fn(x)) tend tocward zerc as n > .

We have Jjust shcwn that an ergcdic assumption on the sequence Z and
a scmewhat stronger assumpticn cn the gaussian ncise implies that V(7,(x)) 0.t
Alsc, we are now in a positicn to investigate the rate of convergence.

If we were dealing with independent samples, the rate cf zcavergence
wculd be C(l/n)o ZFor definiteness, we will ccnsider this particular rate.
Tlearly, if R(t) satisfies conditicn B, the seccnd expressicn on
the right side of (37) will be C(1/n). For the third expression of (37)

tc be cf the same crder, the sequence of Cesaro sums, Sn’ must either
¢szillate between finite bounds c¢r converge. There are necessary and

2
sufficient conditions for Tesarc summability. For example, we have:

1 . . . . . .
We will discuss this assumption on the gaussian ncise later.

2Kncpp, K., Thecry and Applicaticn of Infinite Series, Hafner Fub. Zo.,
195C, p. 486. Translated frcm the seccnd Jerman Edition.
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a necessary and sufficient condition for a series z 8, with partial sums

S tc be Cesaro summable to the sum S is that the series

ne

V=0

%n+4 8nsn
bn % w7 Tia T e (n=20,1, ...)
the relation
i) s+ (n + 1) t, > S holds.
With D = a8 _, the asbove conditicns, in conjunction with condition

«:—)2 T

B cn R(t), yield the rate l/nu These conditions, however, are difficult
to interpret in terms of the {Zﬁ} process. We shall content ourselves
with a simple sufficient ccondition which admits some interpretation and
which at the same time is nct a; cverly restrictive assumption for the
type of problems we will want to deal with.

~

The Cesarc method is regular; that is, if 2z DT converges to s,
= s

® =

then Sn alsc ccnverges to s. Hence, a sufficient conditicn to achieve

the rate 1/n is:
Z 0. = Ba < . (2.2.4h4)

As our final result, we have
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Theorem 2.2.2: Given the sequence of identically distributed random vari-

ables, X; = Ny + Z;, i=1,2,.... Assume:

i?

i) R(t) satisfies condition B

ii) D as given by (L41) satisfies (Lk).

T,2

Then, the empirical distribution function is a consistent estimate of
F(x) with the variance dominated by

o
=

B (x) - F(x)) = WF(x) < =(1+222

l-px

+ Ba)

In addition, if
iii) the sequence {Z,) is ergodic, Fn(x) converges to F(x) with proba-
bility one for every x.
The term 2Bz is contributed by the first part of Dm—l which is due

to the correlated noise, while 4Bz results from the bound on the first

part of DT

2

2

Amcng other things, (L44) implies that ﬁT - C as 1 »w, We have
I |
seen that ergodicity implies only a Z D +C as n »». To charac-
=1 7,2
terize the type of process which satisfies the assumptions of the theorem,
we can replace the ergodic assumption on the {Z;}(equation (38))by the
stronger condition
1im P(BMTY4) = P(A)R(B) . (2.2,45)
n->oo
This is called a mixing condition (Rosenblatt [34], p. 110). The mixing

condition implies that aT(Zl,Zg) - a(zl) a(zz) for every z; and zz, and

from the Helly-Bray Theorem we have lim ﬁT _ = 0. Thus, one class of
. b=
00




63

processes which satisfies ii) of the above theorem is the mixing processes

whose dependency is weak enough so that

Y[ [ e - wteaats)] <o (2.2.16)

T=1 21 22

is satisfied. From the definition of BT,a, this condition then implies
ii) of the sbove theorem.

We observe that if the sequence {Zz) is M-dependent, it satisfies
the mixing conditionu:L In this case, ii) of the theorem and (46) are
obviously satisfied. If the {Z;]} sequence were gaussian, condition ii)
would be satisfied if its autocorrelation function satisfied condition B.

A further characterization of processes which satisfy condition ii)
is given in section 2.7.

The condition R(t) + C as t + », as we have already remarked, implies
ergodicity. The implication does not go the other way. In fact, this
conditicn on the correlation function is both a necessary and sufficient
conditicn for the gaussian prccess to be mixing,2

What we have done in this section is to emplcy the Mehler formula

to dominate the integral

lRosenblatt, [34], p. 11C, shows that a stationary process of independent,
identically distributed random variables satisfies the mixing conditicn.
The extension to a M-dependent process is easy.

[
“Rosenblatt, M., "Independence and Dependence,” Proc. 4th Berkeley Symposium
Math. Statistics and Frobability (1961) v. 2, pp. 431-4h43.
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B

6k

/i/p lga(xl-zl:xz-zaic,pT) - g(x1-21;0)g(x2-22;0)| ax, dxz .

The bound we have obtained is independent of z; and zs and is given in
terms of the correlation coefficient (O By specifying the manner in
which the correlation function R(T) goes to zero, we then obtained a
bound on V(F(x)).

When the Z; are dependent, we have to require a condition like (kk)
so as to specify a rate of convergence.

In estimating the density function f(x), we will make use of these
results. In all three methods which we present the variance of the
estimate is dominated in the same manner; the part of the variance
expression which is due to the dependency of the observations is written
a@s the difference of two expectations involving the appropriate bivariate

and univariate density functions.

2.3 ESTIMATE OF THE DENSITY FUNCTION—~KERNEL METHOD

In this section we consider a method of estimating the density func-
tion which is analogous to that used in estimating the spectral density
of a stationary time series. This approach has already been applied to
the case of a sequence of independent random varisbles [25,26,33,46].

We will generally follow Parzen [26].
The density function we want to estimate is given in (2.1.4) and

repeated here,

f(x) = \/P g(x-z;0)daz) . (2.3.1)

V4
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From the observations Xi’ i=1,2,...n, we take an estimate of the form:

n
!

A A 1 x-X
£ (X1,X2,...%3%x) = f (x) = K (—4& 2.,3.2
K, i) = () = g:i oL (2.3.2)

where h is a sequence of positive numbers depending on n, and chosen so

that

1im h(n) = 0. (2.3.3)

n-+
K(x) is a non-negative function satisfying
sup K(x) < o
=0 < X < o0
J K(x)dx < w (2.3.4)
lim |xX(x)] = o©

X 70

2.%a Bias Calculation

The expectation cf (2) is

E ?n(x) = %E%}(%)} = % / K(X%) f(y)ay (2.3.5)

The following theorem (specialized to our situation) is given in Parzen.

Theorem 2.3.1 (Parzen, p. 1067): With h and K(y) satisfying (3), (4),

respectively, we have
oo

lim E £ (x) = £(x) fK(y)dy (2.3.6)

-+ -0

at every point x of ccntinuity of f( ).




66

A

With [K(y)dy = 1, and since f(x) is cverywhcre continuous, f(x)

is asymptotically unbiased estimatc of f(x) for every x. In fact, since
the gaussian density is uniformly continuous, f(x) is also uniformly con-

tinuous. It then follows from Parzen's proof that the convergence is uni-

form in x.

Our particular density f(x) is more specialized than that needed
for the proof of the theorem. We can use some of its properties to

obtain a uniform bound on the bias. Rewrite (5) as

oo
E £,(x) =Jf K(u)£(x-hu)du . (2.3.7)

-0

Since [K(u)du = 1, we can write
“+oo0
E %n(x) - f(x) = JF K(u)[f(x-hu) - £(x)]du (2.3.8)

-0
To find the limiting behavior of the integral, we expand f(x-hu) in a
Taylor series about the point x. Since f(x) is the convolution of a

distribution with a gaussian density, all derivatives of f(x) exist.

f(x-hu) = £(x) - hu £'(x) + 9%53 £'(x) + 0(h3) (2.3.9)

Choose K(u) as an even function and require that
oo
2
f u K(u)du = By < » . (2.3.10)

-0
Two examples of even, non-negative kernels which satisfy this condition

(as well as (4)) are:
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K(u) = é , Jul < 1
= 0 , otherwise
, -
K(u) = — e 2
N 2n

They also integrate to one.
Substitute the Taylor series into (8), and perform the integrations.

As n > », we get

E 2 (x) - £(x) > 20 5, 7 (2.3.11)

To obtain a uniform bound (and for future reference) we note that
the derivatives of f(x) are uniformly bounded in x. 3Specifically, from

(A.9) it follows that

J
—f—(ﬂ f - x-moaa(z) = CHS [ ey (358 o(BE)aala)

0=
J Z
and
e | . 1 edgt ey NJU f ./
- < =5 T do(z) = - . (2.3.12)
dxY N Jor oIF

4

The last line fcllcws from Zramer's bcund, (A.3C). With j = 2, we have

ey /x o

e (%))

IN

and as n > » (11) is dominated by

B £ (x) - f(x)] < SBEE Loty | (2.5.13)
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It is advantageous, in terms of bias to have h(n) go to zero rapidly.
Consideration of the variance of the error, however, will show that it

should not approach zero too rapidly.

2.3b Variance Calculation

The square of £,(x) is written as

n n n
A2 o) x-X, x-Xp
Pl = =k Z cZ ) ) kEH K ey

=1 m=4+1

We proceed in a manner analogous to the development in section 2.2. Take

the expectation of (14), subtract
n n X
x-Xy X-
2 2 2 E{K(—)p Ejk(— )
H2hZ h
I=1 m=L+1

and add its equivalent

1 1 x-X z
(-3 BEED)

Subtracting the square of the bias, we obtain the variance:

2

57 2(x) - E £ (x))

e e
+naizzz} {(_x’l XX}E{ E{ —X} (2.3.15)

£=1 m=f+]1
Again, the second term is a result of the dependency of the observations

V(£,(x))

i

We proceed to majorize each of the terms in the variance expression.
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The first term written out is

o0

nhz {KZ -X} = ;1% Kd(x—il) £(y)ay . (2.3.16)

=00

From the first two conditions of (4) we have fK?(y)dy = Bs < ». Since

f(y) < 1/N2x0, the substitution of u = (x-y)/h in (16) leads to

K 3.17
—ZE{( } nh\/—-, (2.3.17)

The second term of (15) is

- + o0
—ig [E{K(%)}J = n_rlf. f K(%X) f(y)d{lLQ . (2.5.18)

=00
Use the boundedness of f(y), the same substitution as above, and the fact

that K(z) is non-negative and intergrates to one to obtain

1 x-X 1 1
2 [{x( >] < Lty (2.3.19)

For the third term of the variance equation, let Qy_, be the expres-

sion inside the double sum. Writing this term out gives

-4 ff K(——'ﬂ (_J_) l:m (y1,y2)-£(y1)£(y2) | dyadyz , |
(2.3.20)
where fm_z(yl,yg) is the second-order density function of the observations

in the m and { intervals. The kernel K(y) is bounded (L), say by B-.

Hence,

Q, , <B; ff!fm_](:)’l’y?) £(y1)f(yz) lay.ayz , (2.3.21)
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and we are in a position to use the results of the previous section (see

equations (2.2.10)-(2.2.15)). For example, with the sequence {2y} inde-
pendent,
2 log. .
Q_; < B _len-gl (2.3.22)
Ipm_ll
Combining this with (17) and (19), (15) is majorized by

n
A 11 1 B ; ; Iom 2l
V(f.(x)) <= + = + .
n(x)) <3 2 2 h®n®

eno h
n n - i+l lpm [I

With the autocorrelation function satisfying condition B, (2.2.23) gives

2 .
V(Qn(x)) < 11 _+ 1 Bs 4+ _2BzB (2.3.23)
n 2ng nh V21 o nhg(l-p*)

Under these conditions it follows that we need to require nh® + « as
n + o for consistency of the estimate. Notice that if the observations
were independent, the third term would be absent. In this case (as in
Parzen's development) we need only reguire nh - «.

In Appendix C, section C.l, we show that by choosing K(u) as the

gaussian kernel,

u /2

l -

K(uy = —e ,
N on
(22) is replaced by
2
Q . < K [Pt ci (2.3.24)

m- £ - 1 l |2ﬂ0

B pm-l
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The reascn this is possible i1s that with the specific gaussian kernel
we ~an perfcrm the v integrations in (20) before taking bounds. In this

case, the variance is then dominated by
< b1 | b2
V(gy(x) <22+ 22 (2.5.25)

where we have set

1 2B C
by = - 2 . 1

2r0®  (l-pg) 2O

BsA 21 .

b2

The rest of the discussion will assume a gaussian kernel, and for
definiteness, we assume that the autccorrelation function satisfies con-
diticn B. It was this condition on the noise that gave, for the empirical
distribution function, a rate of convergence equal to the case of inde-
pendent observations. We expect analogous results for estimating the

density functicn.,

2.3¢c Mean-Square Error

The mean-square errcr is written in terms cf the bias and variance

centributions.

E (£a(x) - 2(x)) = E(E(x) - 52 (x))7

As n » o, from (13) and (25). and settingVbs = (ClBé)/Gf;1203), we have
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E{f (x) - f(x)}h < s b2, ba n* . (2.3.26)
n ~ n nh

Zlearly, to minimize this bound, we choose h (as a function of n) so as
tc have the last two terms cf (26) tend to zero at the same rate. Dif-

ferentiating, we find that the best h is given by

1/5
nh o= | P2 (2.3.27)
)-l:bgn

Therefore, as n + o, the mean-square error satisfies

L/
E(?n(x) - f(x)® = o(1/n '5)0 (2.3.28)

This is the order of consistency cne cbtains for the case of independent
samples [26,33].

Theorem 2.3.2: The estimate of the form

=i o

n
f(xl,xg,.onxn,x) - }: g(x-XE;h(n))
A S
2=1

converges in mean-square, uniformly in x, at a rate l/"nu/5 if:
i) {Zl} are independent
ii) R(7) satisfies condition B
11i) h(n) is chosen as in (2.3.27)
Tlearly, we can extend the results for other dependencies on Z.

For the M-dependent case, we have:

nNorollary 2.%.1: Under the preceeding hypctheses and with condition i)

replaced by

i) ZE is independent of Zm if ﬁm-l} > M, the order of consistency rerains =

C(l/nu/5)
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This corollary follows from the comments in appendix C, (C.10),

choosing h as in (27), and taking by, as

by = S 1+A—(—M—'—ll . (2.3.29)

2no 1-py

A
We have obtained the result that the estimate f,(X1,...X,;X) converges

k/5

in mean-square to the univariate density at a rate not slower than l/n

As will be seen in the next chapter, in attempting to estimate the k-variate

density function f(xl,...xk), the bound on convergence which we are gble

to specify indicates slower convergence.

Another disadvantage of this method is the problem of "growing memory."

The estimate we have been using is of the form

n
A 1 x-X
£ (X1,Xe,.. X 5%) = z K<———1) ,
nh(n) =1 h(n)

from which it can be seen that all past observations must be stored—at
each stage a particular observation's contribution to the estimate is
weighted differently.

This problem can be eliminated if one is willing to accept & final
estimate which is biased. For this situation, we need only store the
past N observations, where N is determined by tne bias one will accept.

A recursive relationship is then used to update the estimate.

One advantage of the kernel method is that the estimate is a density

A
function; fn(x) in non-negative and integrates to one. Another advantage

is that no knowledge of the gaussian or z process is required to form
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the estimate, and only a minimal amount of information is required to

specify the rate of convergence.

2.3d Mean Integrated Square Errcr (MISE)

Ancther criterion which has been used to measure the error is the
mean integrated square error (MISE). Using this criterion, one can specify
an optimum choice of the kernel K(y) and investigate maximum rates of con-
vergence. 1t is primarily the rate of convergence which we now want to
discuss.

The MISE is defined as
. A 2
J = E f(fn(xl,m,xn;x) - £(x))° ax (2.3.30)

We remark that the condition nh(n) = « is sufficient to show that,

with prcbability one,
n

£y, X0 = 5 ) glxXysn(n) (2.3.51)
7=1
1s square integrable in x. In fact, in appendix C we cbtain a bound on
the MISE. Our result (see section C.2) is that the MISE = O(l/nu/5),
which is the same rate obtained for the mean-square error. The question
naturelly arises as to whether one can specify a maximum rate of conver-

gence using estimators of the above type.

1’-l?h.‘is is for the case of independent Z and correlated noise with condition
B holding.



|

>

Watson and Leadbetter [45] consider the problem of optimizing the

estimator of the form
n
1
2 (x) = - }; K (x-X,) (2.3.32)
=1 v

given a sequence of independent observations. They show that the MISE

is & minimum if the Fourier transform of the kernel Kp(x), which we denote
by My (v), is equal to

y Kn )

|Me(v) [ . (2.3.33)
1 + &Eill IMf(V)lz

n

MKn(V)

Mp(v) is the characteristic function of f(x). Notice that MKn(v) +1

as n * », indicating that Kh(x) approaches a delta function as is the

case with the previous estimator. Here, however, the kernel's functional

form is dependent on the index n, which gives a more complicated estimator.
They show that the minimum MISE cannot decrease faster than 1/n.

Specifically, with the optimum kernel given by the inverse transform of

(33), the minimum MISE is

(0)
J = Mi{i——— - 0(1/n)

Watson and Leadbetter further characterize the optimum estimator
by studying the asymptotic behavior of the (unknown) characteristic

function Mf(v).l

1The estimator in (33) is of no practical value since it is expressed in
terms of the function being estimated. By specifying the asymptotic be-
havior of Mq(v), they show that there is a class of kernels, with the
same asymptotic behavior, which achieves the maximum rate of convergence.
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Of particular interest to us is the class of characteristic functions
which decrease exponentially with degree r and coefficient y. A character-

istic function is of this class i1f it satisfies:

r
i) le(v)l < A e-7lvl , for some constants A >0, y >0 and 0 <r < 2.

1
dt

ii) +0a8s v+ o .

0 1 +exp(2pv) M ()]

Under these conditions they state the following theorem.

Theorem 2.3.3: (Watson and Leadbetter, p. 490): Let Mf(v) decrease ex-
ponentially with coefficient y and degree r. Then Jn*’ the minimum MISE,

satisfies

1/r

13 = [1/x(2y) "]

l/r

lim [n/(log n)
n-oo

For our case r=2 and with independent observations, the minimum MISE
converges to zero at a rate JEI;R:;;Z?. This assumes an estimate with the
kernel given by (33) and represents an improvement in the convergence
rate at the expense of a more complicated estimator.

With the noise correlated and the'sequence {Zl} independent, we can
obtain a corresponding expression for the optimum kernal expressed in
terms of Mf(v) and the sequence of correlation coefficients {pT]. Cal-

culating the rate of decrease for the MISE is difficult. However, it

1
is easy to show that the minimum MISE cannot decrease faster than 1/n.

1
These comments are substantiated by paralleling the development in [45].
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It is this rate and the one for the independent case which we will want
to use as a point of reference while discussing the series methods of
estimating f(x).

2.4 ESTIMATING THE DENSITY FUNCTION BY SERIES METHODS —AN ORTHOGONAL
REPRESENTAT ION

In this section f(x) is represented in an orthogonal expansion and
it is this form which we will estimate.l Our concern will be with con-
vergence, not only in the sense of MISE, but in mean-square as given by
(2.1.1) and (2.1.2).

The density function

f(x) = b/;(x—z;c)da(z)

is a bounded integrable function. Hence, it is Ly and can be expanded

in a series of orthonormel functions:

oo

f(x) = }z aj @j(x/dl) (2.4.1)

j::

a, = \/ﬁ f(x) wj(x/ol)dx . (2.4.,2)

-0

Naturally, equality in (1) is in the sense of limit-in-mean. The func-

tions in the expansion are the normalized Hermite functions which form

a complete orthonormal set on the whole line (see Appendix A, section A.2):

1This technique has been discussed in [6], but not in any depth.
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@j(x/dl) - g(x/0y) Hj(x/cl) (2.4.5)

~/23j"./~llm?l

0, 1is an arbitrary positive constant.

As discussed in appendix A, we reserve the H notation for the poly-
nomials orthogonal with respéct to the square of the gaussian weight. They
are generated by differentiating ga(x). The He polynomials are generated
by differentiating g(x) and are orthogonal with respect to the gaussian
weight. These polynomials were introduced esrlier.

Given the sequence of observations {Xli, 1=1,2,...,n, the problem
of estimating f(x) (in the Lo sense) is reduced to one of estimating the
coefficients aja We designate the estimate of the aj coefficlent at the

A
n-th state by ajn:

n

an - = z 0y(X,/51). (2.k.4)

=1

It follows that these estimates are unbiased:

n
E gbn = % }: E @j(xl/ol)
=1
o0
z\/ﬁ ¢j(x/cl) f(x)dx = 8y - (2.4%.5)

=00

A
The mean-square error in . the estimate is then given by the variance of ajn

To calculate this variance we proceed as before:

A L2 2
|

(8, ) = B(8&;, - E8;,)° = E(8) p

Jdn
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n n n
2 .
= E{i—g— Z ij(xl/cl) +§2—_ Z z Qj(Xl/cl)@j(Xm/oll}_ aja
f=1 1=1 m=L+1

E (cpj(xm/cl))} : (2.4.6)

The first expression on the right is easily dominated using Cramer's bound.

From (A.29), we have

X
e 2 <ecp, (A.29)

where the constant c¢; is independent of x and j. Hence,

o 1/ 1/2
le(X/Gl)! < cy/(n / oy / ) = cz2, (2.4%.7)

2
and the first expression in (6) is dominated by 202/n;
For the second expressicn in (6), we again write out the expectations

and use the above bound on QJ(X) to dominate it by

n n oo g
22 ) ) [ e - teseknee . (200)

I=1 m=L+1

We have already mejcrized this term. As it will agasin appear in the
sequel, we use our previous results to record the following lemmas.
Lemma 2.4.1: Assume

i) the autocorrelation function satisfies condition B




ii) the sequence {Zﬂ} is M-dependent.

Then, (8) is majorized by

2
2 (2 ¢ u(u-1))
n  l-p¥

, ol .
Alternatively, if |R(<)| < 02/7 for lr| > By, and 0 < & < 1 (condition A},

we have
Lemma 2.4.2: Assume
i) R(r) satisfies condition A
ii) +the sequence {Zl] is ‘M-dependent
Then, (8) is majorized by
2c2” <§;+_1 > » beB(M-1) (2.4.9)
l-py \ 1 (1-8)115 n
The proofs and appropriate definitions are given in the discussion
leading to Corollary 2.2.1. Clearly, the M-dependence assumption can be
replaced by a weaker condition as reflected in Theorem 2.2.2. Again,
the point here is that the estimate of aj is taken as an average of
bounded functions and the problem then reduces to one of dominating a
sum involving the absolute difference of the bivariate and univariate
density functicns.
In the following discussion we shall refer only to Lemma 2.4.1.

Theorem 2.4.1: The estimate as given by

n

A 1 - . ,
8n 7 o Ez @j(xl/cl) (2.4.4)
=1
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is unbiased, and under the hypotheses of Lemma 2.4.1, the variance is

bounded by
2
V(8, )< 2 (2 +282 4 y(m1)) = Sa (2.4.10)

Now define the estimate of the density function at the n-th stage
by
4(n)
A A
T (x) = }Z a,_ ¢.x/01) , (2.4.11)
n Jn *J
J=0
where q(n) is an integer which depends on n. Consider the MISE:

+oo

A . 2
J, = \jp E(fn(x) - f(x)) ax
=00
o0 q
2 A 2
= + -
E: aj E: E(aJn aJ)
J =q+l j =1
2 ca a(n)
< a + . (2.4.12)
- J n
J=a(n)+1

o0

Since jél a? = ffg(x)dx < o, it follows that the first term of (12) goes
to zero if g(n) + ». With q(n) properly chosen so that the ratio a(n) /n-o,
we have Jn+ 0.

The problem of Speci%ying the sequence {qg(n)}, n=1,2,..., 1s analogous
to choosing the constants h(n) in the previous section so as to balance the
bies and variance errors. Here, & partial answer is provided if we assume

that the random varieble Z has, for example, a finite second moment,



=%

\jszdO(z) < . Below, we will show that this assumption implies that

-0

the coefficients as satisfy

2

< Bali™ , (2.4.13)

e B
.
JA

where Bg is a constant independent of j. With this being the case, from

the Euler-Maclaurin summation formula, we obtain:

00 o) o0
S
- - ;_ l_ o 1 - i . -l—
Z aj < Ba Z = n Bga f(te : ts)dt «Be(q . qa)o
Q(n)i“l g+l q (2(14”14)
The MISE is then dcminated by
1
Ty < Be (273 - caaln)
d q n
, 1/2 1
and with g(n) = n ",
o 1/2 ,
J = C(1l/n ). (2.4.15)

n

4’5
This dces nct compare faverably with the 1/n '~ rate obtained by

C1/2
“he kernel method. Here. however, the rate 1/n ° is nct a dire-t re-
sult of the method of estimaticn. but rather, results from the seccnd

moment assumpticn. After proving (13), it will be clear as tc what ad-

diticnal moment assumpticn is needed to achieve any rate up to l/no
00

Lemma 2.L4.3: With [ z°dx(z) < w, the coefficients a; satisfy

(X

lMore precisely, since g is an integer, we choose q = th}, where
denotes the largest integer< J}lu




.

ES

8
s < Be/d
J

To prove this lemma we first obtain the conditions on f(x) needed

to give the abcve bound and then show that the second moment assumption

implies these conditionsol
Proof: From (3),
o oo
a; = | f(x)os(x/oy)ax = f(x) g(x/o1)H,(x/0y)dx
J J ’ J
-0 -0 (2°)+°16)

J?ji/Wmc?

We note the relationship for the derivative of the Hermite polynomial

which is obtained from (A.28),

(x/01) = 2L%i;l Hj(x/cl)

4
dx J*+*

Substitute for Hj(x/cl) and integrate by parts.

+ o d
—H. /o
/gl) 91 dxHJ*l(X’ 1)

= f
3 f o J?ﬁ/f“‘cl 2y - 1)

dx

~1(x/01)
= Jf i 012 [%; f(x)g(x/dli] dx =
2(3*1 J237 2 (541) / N o

«/_~1—' f a(x/o1) [x £f(x) - £'(x) 012] ax . (%.4.17)

Repeat the argument with the function (xf(x) - 0.5f'(x)) playing the role

Mhe essential idea of the lemma can be found in Sansone [38], pp. 368-369.
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of f(x):

-1
a8 =

;w,Hj+2(X/01) 01" %; {:g(x/gl)(xf(x)-olzf'(x)i}

dx

I TG (3+e) 4 J2i* (y42)1/ Vi o)

+o
1
= ® ( /Ul) ( )d ’

2 V(30 (372) [ i

where w(x) = ((x®-0,%)f(x) - 20,%xf'(x) + o ¥ (x)) .

“+oo
aje < —1 era(x)dx < Be
b(3+1)(5%2) 52

where Bg is the Lp norm of w(x)/2.

(2.4.18)

If w(x)els we obtain

(2.4.19)

Using characteristic functions, it is easy to see that w(x) is an

Lz function by showing that the individual terms are Lo.

)

Jr A f(x)dx

=00

+oo

f e—‘jvzda( z) .

=00

I}

Me(v)

]

M(v)

Recell that X = N + Z, and that N and Z are independent.

1 242
Mf(v) = e 2 &1(v) .

Define:

Then,

(2.4.20)

Clearly, Vsz(V) is Lp. Then from Plancherel's theorem its transform

d2

f"(x) is Ip. Similarly, if ey Me(v) is Lp, x®f(x) will be Lo.

2

the second moment of Z finite, the first and second derivetives of

With

Mv) exist, are continuous and bounded. From this it follows that
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2

<

e Mf(V)€L2. In this manner, all terms of w(x) are seen to be Lo
functions. g.e.d.

It should be clear as to the conditions needed to guarantee faster
convergence of the MISE. Assume that the r-th absolute moment of z

o
exists, [ lz]rdu(z) < w., By repeated application of the method of the
-0 .

lemma we obtain:

2
a. < Bs/jr
J puony
2 1 1
a, < Bagl\l7T7T =+ —7] . 2.4.21)
z j - 6<(r—l)qr'1 qr) (

Bg 1s now the Ly norm of the function

) r
0= r 1 a

g(x/o1) 21‘/2 ax’

(&(x/o1)£(x)).

We summarize this discussion in

Theorem 2.4.2: Under the hypotheses of Lemma 2.4.1, the sequence of

estimates
a(n)
‘%n(xl,xg_,;.oxn;x) =z 'éjn cpj(x/cl) (2.4.11)
Jj=0

with gq(n)+> » and q(n)/n + O converge in the sense of MISE to f(x). If
LY
[z, dfz) < «, v > 2,

the MISE at the n-th stage satisfies the inequality
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Jp = E J (fn(x) - f(X))2dx < Be( 1 s 1 )

(r-1)q(n)** a(n)

where cz is defined in (10). Choosing q(n) as the largest

1
< (Bgn/cs) /x gives

°

5y = o(1/alF/Ty

integer

(2.4.23)

We now want to consider the mean-~square error for fixed x. With the

A N
estimate fn(x) as in (14), define the function

a(n)
e 1) = ) e aylx/ou)
3=0

The mean-square error, as a function of X, is given by

(2.4.24)

E{(f(x) - B (X1 Xz, .. X Xp5%)) } {f(x) - f (x ))2} -

(£(x) - £4(x))

q
+ 2(flx) -fq(x))z E(aj-.an) CPJ(X/Ol)
3=0

}: (a; -aJn )8y - akn)) @ (x/01)0 k(X/Gll

OO

J=
Ko

(2.4.25)

I3 ‘N » » 3 1]
Since 8jn 15 &an unbiased estimate, the cross-product term is zero, The

other expectation of (25) is bounded by Schwarz’s inequality and Theorem

2,41




87

Using (7), the third expression in (25) is dominated by c3q°(n)ca/n.

Hence, we obtain the bound:
2 2
E{:(f(x)-fn(x))‘g} < (£(x)-1(x))% + ca cs am) . (2.4.26)
n

To continue the discussion we need to investigate the pointwise con-
vergence of fq(x) to f(x).

Theorem 2.4.3% (Sansone [38], p. 381): If f£(x) is contained in L; and

I- then, at a finite point Xq» the series

©o

E: aj QJ(X/Ul)

Jj=

behaves like the Fourier trigonometric series of & function which coin-
cides with f(x) in an arbitrarily small neighborhood (x0-h,xg+h) of Xo

In particular if f(x) is of bounded variation in a neighborhood of

Xy we have

oo

Z aj @j(xo/cl) =§ l:f'(xo+) + f(Xo-):I ’
j=0

and again if f(x) is continuous and of bounded variation in (-w,o), then
the series converges uniformly in any interval interior to (-w,w).
Sansone's proof, which is attributed to J. V. Uspensky, involves
showing that in a neighborhood of Xq the partial sum of the series can
be made arbitrarily close to the partial sum of the Fourier expansion

of the function in the same interval. This adaptation of Fejer's method
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of Fourier series is also used by Wiener to obtain the same result.l
The above theorem is a special case of the more general result that for
orthogonal functions of the Sturm-Liouville type, the Ly series of these
functions behaves in the same menner at a point as Fourier's series do
(Hobson [18], p. T771).

The density function f(x) is Ly, Lz, and continuous for every x.
It is also of bounded varistion in any interval since f'(x) exists and

is bounded (see (2.3.12)). Hence, in any finite interval, as n+w we obtain
a(n)
f (x) = }: aj @j(x/dl) ——> f(x), uniformly in x.

q
J=0

Specifying a rate again involves & moment assumption. Assuming the

r-th absolute moment of Z exists, where now r > 3 (cf. Theorem 2.4.2),

yields:
22l < | ) ey 0, (esa)]
J=qt+l
<e )l
= . J
J=q+l
< caVB 1
S Ca 8 ‘jr/z
J=a+l
< cgvﬁ§;< At ) . (2.4.27)
(ga)qﬁ a2

1N. Wiener, The Fourier Integral and Certain of Its Applications, Dover
Publications, Ine., N.Y., 1933, pp. 55-67.
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We have used (7), the first part of (21), end the usual integral upper

bound. We are now in a position to prove

Thecrem 2.4.4: Assuming the hypotheses of Lemma 2.4.1 hold, then, since

f(x) satisfies the conditions of the previous theorem, the sequence of

estimates
a(n)
P(x) = Z Q.jncpj(x/cl) (2.4.11)

J=1

2
converge in mean-square to f(x) if g >« and g /n + 0. This convergence
is uniform in x for any finite interval. If the r-th absolute moment of

z exists, r > 3, the mean-square error is dominated by

2 2 2
A 2 2 1
E (f(x)-fn(x)) < Bacz L ) + == + Cac2 4 (n) .
(g-l)cﬁ =) n
(2.4.28)

l/r1

Upon choosing q(n) = [n"'"], as n » «» we obtain

r-2

0 {(ﬂx) i fn<x>f}= o(1fn T )

For the application cf the empirical Bayes technique, we shall need
A )
the convergence of f,(X,) to the random variable f(X,). The mean-square

error in this case is written (see (25)):

E_ {f(Xn) . (le,mk,xn;xn))e} -
A 2
En{(f(Xn) - fn(Xn)) } =

1. :
We use the Ep notation of Chapter 1.
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ﬁf(X)-fX))J>

r2 8, {(00x,) -2 >>Z (a5-83) oy0Kp/o) |

rES qi (aj-ajnxak-skn)wj(xn/mq»k(xn/ol) L (2h29)
30
k=0

Now, the first and third terms have already been bounded independent of
the argument. With a r-th absolute moment assumption on the random vari-

able Z, from (27) we have

E S(£(Xy) - fq(xn))i} SGZJQ( 1 _ + 1r)2 ’
(F-1a2 7 9%

2 2
and as before, the third term of (29) is dominated by Eﬁ c2 q . Using

these bounds and the Minkowski inequality, (29) is dominated by

A 2 1 1l -
En{_(f(xn)-fn<xn>> } < {@QE RN qrﬁ) *

2

ca q ﬁa . (2.4.30)

The fastest rate of convergence is obtained if g(n) is set equal to the

1l/r
largest integer less than or equal to (Ben/ca) / . This gives:

ﬂr(x)-%(x)>}< c2 By S
(— -1) [(-ﬁ -1:| 31
Ca‘/:; (Be/ca) / >2
l/r * r- r
[(_Q) ] -1] o(x-2)/2
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Asymptotically, (31) is dominated by

1 r2
A 2 -
E {(f(X )-f (X ))} < —2 2 . T g, &
n n n' n —_
n(r-e)/r (% -1)
l £:g 2
+ cz By cg °F i (2.4.32)

Corollary 2.4.1: Under the hypotheses of Lemma 2.4.1 and with the r-th

A
sbsolute moment of Z finite, r > 3, fn(Xn) converges in mean-square to
f(Xn). The mean-square error is dominated by (31), and for large n we

have

5, {(fn<xn)-?n<xn))2} - o/ ™Ry, (2.4.33)

It is not surprising of course, that we achieve the same rate as
in Theorem 2.k4.L.
In practice, we may want to hold q fixed, i.e., estimate an approxima-

tion of f(x). We then take the estimate

q
t(x) = Z é‘jn 05(x/01) . (2.4.34)
Jj=0

q is now a fixed integer chosen according to some error criterion.
The estimates of the g + 1 coefficients, (L4), can be put in the

recursive form

g‘jn = %[(n'l> an-l +q)j(xn/cl)]) J =0,1,...q. (2.4.35)

~e

£ (x) converges in MISE to & function which differs from f(x) in
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the Lo sense by }: a.

V)

i.e., (12) gives

J J
Xl
E [ (2(x)-7,(x))%ax < Z S (2.4.36)
j.—.q*i’l

In practice, it can reasonably be assumed that the second moment of Z

exists. Hence, the asymptotic error in the estimate is then known to

be inversely proportional to the number cf terms used in the series((21)).
Similarly, we can take ;n(Xn) as an approximate estimate of f(Xn)e

With r greater than two, the mean-square error ((30)) is bounded by
; nt 2 l \/———! 2
E 4 (£(X,)-f (X)) L <9 caVBg L + . czaves
n n n - £ _l) q _1 q r \/__I
2 : L n

The asymptotic error is

lim En{(f(Xn)-;n(Xn))g} = o(1/qr'2) ,

which is inversely proporticnal tc scme power of the number cf terms used.

ols

2.5 ESTIMATINY THE DENSITY BY SERIES 'METHCDS~AN EIZIGENFUNCTION REFPRESENTATTCN

The method we now discuss makes use of the fact that f(x) is the
nenvolution of a known gaussian density function with an unknown distribu-
ticn. This is in ccontradistinction to the previcus methods which do not
utllize this knowledge.

Iﬁ the equaticn for f(x)

J .
0

£(x) :J[‘ g(x+zz0)da(z) ,

-0
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alz) is the unknown quantity. To make use of this we want to express
f(x) is a form which, in some sense, isolates a(z). This is accomplished
by sclving an eigenfunction problem associated with the above equation.

We first observe that the "kernel" g(x-z;o) is not Hilbert-Schmidt;
it is not square integregble in the x-z product space. We will display

a function s(x) such that
2 2
Jf JF s (x) g (x-z;0)dx dz <
X z

A considerably more difficult task is to choose a s(x) sc that we can
solve for the eigenfunctions and eigenvalues of the operator s(x)g(x-z;0),

i.e., find the ¢'s and ~'s which satisfy

[ stgta-zso) o (afor)az = rg 0 0x/)

-0

We shall find these quantities by obtaining the diagcnal Lo expan-

sion

[5.1]

S(0)elx-zs0) = ) &, 0,(x/r) 0y(2/o0)
j=0

Ncte that by & change of variables y = X9 , the right side of the expan-
7

sion is symmetrical in y and z. Hence, the operator s(yy/cl)g(§% - 230)
is alsc symmetrical and the sbove formulae reduce to more familiar forms.
For cur purposes, it is more convenient to deal with the unsymmetrical
cperator, s(x)g(x-z;0).

Having found the ¢'s, we define the coefficients asscciated with

+he distributicn ofz):



1 T Y T —,—

i

ok

oo
2, = | oye/o) anta)

Under suitable conditions, the quantity s(x)f(x) can be written:

oo
s(x)f(x) = \jﬁ s(x) g(x-z;0)do(z)

= d .
) na(x/)
5=0

It is this form which displays the unknown quantities—the dj's.
Consequently, we will estimate not f(x), but rather, the product
s(x)f(x). Since s(x) turns out to be & positive function, it is then
just a matter of dividing by s(x) to discuss the mean-square error.
However, as discussed in section 1.2, when an equivalent test which
incorporates s(x) can be found, the quantity we are interested in estimat-
ing is Jjust the product s(x)f(x). We proceed to obtain the above
expansion.
Consider the gaussian density appearing in the convolution.
g(x-z;0) 1is an Lp function in z for every x. Expand this function in

the orthonormal series

[+ 4]

g(x-z;0) =z CJ(X;U;UI)(PJ(Z/G:L) (2.5.1)
=0

where the QJ are again the Hermite functions as in (2.4.3), and o; is

an arbitrary positive constant. Here the expansion is in terms of the

indepenaent varisble z. As indicated, the coefficients are functions
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of x, 0; and g, and are calculated by

+o
cj(x,cl,c) = u/\g(x-z;c) @j(z/ol)dz . (2.5.2)

=00

The evaluation of this integrsl is the main result of Appendix B. Make

2 _ (01%-0%)(0,%+0%)

012

the definitions:

1.3
|

(2.5.3)

Then, from (B.10),

i X;\/__lﬁ A X
cj(xlcl,o) = EJ el ) HJ( /7) (2.5.4)

j )
\/EJJ'./VIHI g3

and hence,

J
3 HJ:(X/V)CPJ(Z/Gl? (2.5.5)
2 NERYN=I

g(x-z;0) = g(x; Vo,%+0°

Now consider the function

[_' glx;7)
*0x) = g(x; v o,%+0%)

V(-2 ) 2 o (£5)
o1 -02 2+02)(0 %) JE 2 0,22

(2.5.6)

Let o) be greater then o but otherwise arbitrary. Then, s(x) is a bounded

function. It is also non-negetive, L;, and Lp. Multiply (5) by s(x)
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00
. . J .
s(x)e(x-230) = ) & oy(x/7)0 (2/01) . (2.5.7)

3=0
s(x) is just the right function to meske the set of coefficients cj(x,o)
an orthogonal set (with respect tc dx); or what is the same thing, (7)
is an Lo expansion in the x-z product space with the coefficient aij =0
if i#3, ajj=§J. In fact, we even have more. Since g(x-z;0) as a func-
tion of z satisfies the conditions of the thecrem quoted earlier (Theorem
2.4.3), (5) converges uniformly in z for every x. Hence, we have point-
wise convergence in x and"z. Multiplying by s(x) does not change this
convergence and (7) converges pointwise to s(x)g(x-z;0). Since & < 1,
it is easy to see that the error in the remainder term of (7) is dominated
by

2

S J+1
J C1 3
z £” o (x/v)e.(2/01) < — (2.5.8)
3=J ’ ’ Nryo; 1-8

Since the remainder is independent of x and z, (7) converges uniformly
in x and z.

Ncw write
o

s(x)f(x) = L/ﬁ s(x)glx-z;0)da(z)

=0

and substitute (7).

e = [ | ) e o tarn) oyzlon)| aaz) . (259
~0 | §=0

It is not difficult_tg caloulate the Ls norms for both sides of (7).
It is equal to & (&9)7 = (012702)/202
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Define dj as the J-th coefficient associated with the distribution

a(z).
+oo

dy = Jf @j(z/cl)da(z) (2.5.10)

We justify interchanging the operations in (9) by the Lebesgue dominated

convergence theorem. The result is:

2]

s(x)£(x) = Z SEWENEYS (2.5.11)
§=0

Equation (11) is an orthogonal representation for s(x)f(x). It also
follows, in a number of ways, that the series converges pointwise. In

view of the inequalities
la;I < T o (z/o)ao(x) <
J

1/4Cl 1/5; [raa(z) = 1/LCL1 1/2) (2.5.12)

(ﬂ o] (1! 01

and |t < 1, it also follows that

g
Ls(x)f(x) - }Z g9 d; WJ(X/Y)I
j=0

(2.5.13)

<

Vrog ! 1t

and the series in (11) converges uniformly in x.

To estimate the quantity s(x)f(x), we proceed in a manner analogous

to section 2.4. Take, as estimates of the product of the coefficients
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§J dj’ the quantity

n

8 = 1) X/ s, 3= L. s (2.5.10)

Jn 1
1=1

The estimates are unbiased:

E( ¢’ 3. )

) = By X/n)s(0)

[ oytximstostoa

gd a, - (2.5.15)

Since the function wj(x/y)s(x) is bounded (uniformly in j and x) by

1/4
2, 2
9 (x/7)ex) < 1/1*c;l/2 {i;}} o
14

X ()22

1/ (2.5.16)

g1
- N = Cg ,
n (012-02)5/ (012+02)1/h

in analogy to Theorem 2.4.1 (see (2.4.10)) we have

A
Theorem 2.5.1: Under the hypotheses of Lemma 2.4.1, the estimates §‘j d

Jn

converge in mean-square at the rate l/n:

2 2
2d (4,-4 = v(edg ca & 1)) - ¢=
E<{? (dJ djn)‘}> V(& djn) < " 2+ Lo + L4(M 12) .

(2.5.17)
As the estimate of s(x)f(x) at the n-th observation we take
a(n)
A A
s(0F(x) = ) 8 e (x/n) . (2.5.18)
. jn J
j=
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Designating J, a@s the MISE, we have:
! 2
Iy = B (s(x)(s(x)-£,(x)))" ax
® 9
2J . 2 2 A =
= Z 3 dJ +Z E{-_E, (djn-dj)} (2.5.19)
J:.q+l J-‘~’l
In view of (12) and the previous theorem, Jp is dominated by
2 2
e n
g = E (29(n) | csa(n) (2.5.20)
g, 1-&8 n
N 01
For fixed n, this bound is minimized if q(n) is chosen as
1 o] J_A 2
a(n) = in S Ce - fon- (2.5.21)
2 Int 0 24n 2 2ing 21Iné

The logarithm is taken to the base e. Since 0 < & <1, g(n) » . Letting
a(n) equal the largest integer less than or equal to (21), Jy, is dominated

by

2 2%s
It <( cy >§ - ;.;.%5<c6+£_n_ ) (2.5.22)
—_ > n i
n ul/gol 1-¢ 2| int|

Thecrem 2.5.2: Under the hypotheses of Lemma 2.4.1, the sequence of

estimrates
a(n)
I 1 J A
= = d. Ax
s(0f (x) = 3 £ a5, 9,(x/7)
=1
with ccefficients
n
j A 1
E5 dgn = n ) 03(Xy/7)s(Xy)
£=1
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converge in MISE to s(x)f(x) if q(n) is chosen as above. In this case,

the MISE satisfies

o= o (4am (2.5.23)
n

Cbserve that no assumptions on the moments of the random variable
Z are required.

The mean-square error for fixed x is given by (cf.(2.4.26)):

B(s"(x) (£(x)-£,(x))7) = 8% 0)(£(x)-1 (x))2

q
+ 28(x)(£(0)-24(x)) ) E(8(ay-Ay))0, (/)

s ) B (a8 4 e, e/ /) (2.5.24)
3=0

k=0

fq(x) is defined implicitly by the equation
q(n)

s(0gy(x) = )t ayx/y) (2.5.25)
50

From Theorem 2.5.1 and (2.4.7), the third term of (24) is dominated

by

The first term of (24) is majorized using (13), and the middle term is

zero. Combining bounds yields:
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2 A 2 et £Z 2q(n) _C_i cs g°(n)
E(s (x) (£(x)-£,(x))7) < (007) (1) 3 +J?7 " .

(2.5.26)
The fastest rate of convergence is obtained if a(n) is set equal
to the largest integer less than or equal to

Inn
2 Int

Using the inequality tn(n) -1 <q(n) < in(n) , we have:
2 Int 2 In ¢

A C 4
E{f(x) (f(x)-fn(x))z} < A
(no17)(1-t)

clacs 1l (In n)2

N y B In §

il o

+

(2.5.27)

Theorem 2.5.3: Under the hypotheses of Lemma 2.4.1, the mean-square error

(for fixed x) satisfies

2
L
2Q 0 (e 2,0)7 b = o) (2.5.26)
Consequently, the sequence of estimates
q(n)
A 1 1 Z J A
= - 2.5.2
Bx) = oS 3 £0 4, @ (x/) (2.5.29)

converge in mean-square to f(x) at the same rate. This convergence is

uniform in any finite interval.
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) A
To investigate the mean-square convergence of s(Xn)fn(Xn) to the ran-

dom varisble s(X )f(X ) we write:

En{( 52<xn)(f(xn)_§n(xn))2} ]
En<{?2(Xn)(f(X )-f4 )f}>
q(n
+ 2B,< (X, ) (£(X,, :? (a3-a 5(X /7{}

J =0
a(n) .
By }: £t (a;- aq )(d5-d; )@ (Xp /7)o (X /7 ) (2.5.30)
=0
k0

The first and third terms of this equation have just been bounded
independent of the argument. From the Minkowski inequality, (13), and

the expression below (25), we have (cf.(26)):

En{f(xn)(f(xn)-%n(xn))2} <

1 t,a(n) () ]
Sleo B L, [Ss 42 (2.5.51)
Nmoy oy (1-¢) J;ﬁy o'
This expression is minimized for fixed n if g(n) is chosen as
I )
a(n) = c7 + s (2.5.32)
2| tnt |
where
1/4 1/2
7 c1e 1-¢
¢y - Ifoars) (1) (2.5.33)
c1f
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1
Setting q equal to the largest integer less than or equal to (32), we have:

{-(x )(£(x,)-£,(%,)) <

2,¢C7
Clg

Nroyy (1-8) J—1

( in (nz
7 2 in|t| QG‘

(2.5.34)

Corollary 2.5.1: Under the hypotheses of Lemma 2.4.1, the sequence of

estimates
a(n)
A 1 J
s(X )Tp(Xy) = = z 3 dnCPj(Xn/7) )
J=0

with q(n) given by (32), converge in mean-square to the random variable
s(X,)f(X,). The mean-square error is dominated by (34). Hence, we achieve

the rate:
A n2 n
En{52<xn>(f(xn)-fn(xn>)2} - ogtlely (2.5.35)

There are a number of differences between this method of estimation
and the previous Lp series representation. To apply the method of this
section the standard deviation of the noise must be known while in the
previous method a moment assumption on the random varisble Z is needed

to specify a rate. Using the present method, we have obtained a rate of

lye nave used q > cp -1+ _tn(n) in the first expression on the right side
of (34). - 2| ant |
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2
1n n/n for the mean-square error (Thm.2.5.3) and 1n(n)/n for the MISE (Thm.
2.5.2). For the first series method, with the r-th absolute moment of Z
- (r-2)/r
finite, we had the rate l/n for the mean-square error (Thm. 2.4.4)
- 1

and l,/n(r 1)/x for the MISE.

In practice, we may want to hold q fixed, settling for an approximate

estimate of s(x)f(x). In this case, we designate the estimate by

q
s(x)f,(x) = Z " &y 0y(x/7)
j=

Considering the MISE we have (see (20)):

lim E [ (sz(x)(f(x)-;n(x))a dx =

oo
o . g+t
. 2 2 2 2
VT ey 1 Vit 297 | 02240

L
J=d (2.5.36)

~

Similarly, s(X,)f,(X,) converges in mean-square to s(Xn)fq(Xn).

The mean-square error is given by (31) and the asymptotic error is:

lim En{sz(xn)(f(xn)-'fn(xn))a}

o

LIhe comparison of rates for MISE is not really valid as different
quantities are being estimated.
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4 2 2,.29%1
1”1 (017-0")
< == (2.5.37)
—_ 4 +
1t Lo (012+02)2q 3

The asymptotic error in both cases decreases geometrically with q.
In the previous method, the asymptotic error is inversely proportional
to some power of q.

Another significant difference between the iwo methods is when we
want to estimate the density function &'(z). This will be discussed in
section 4.k,

Recall that o, is an arbitrary constant chosen to be greater than
o. (o is the standard deviation of the noise samples.) For applications
in hypothesis testing with a minimum probability of error criterion, we

will use a test function of the form

Pos(x)f (%) -pas(x)fi(x)

Since s(x) is proportional to

x2 0_2
Y ?{(012-02)(012+02)} ’

the free parameter o; can be considered as a scaling factor for the test

functional. We shall discuss the problem of choosing o; in section L.1.
We remark that in the series method of section 2.4, o1 is also

arbitrary and would naturally be chosen to minimize the bound on conver-

gence. For example, it enters into the MISE bound through two terms: Bg

ar
is proportional to oy and cgz is proportional to 1/c; .
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2.6 SPECIAL FORMS OF a(z)

We consider the case where a(z) contains a finite set of unknown
parameters which enter linearly into f(x). Examples are equations (1.3.5)

and (1.3.7) with the set of a priori probabilities unknown. We take (1.3.5)

k
oz) = j{: p; u(z-y;) (1.3.5)
i=1
where u(z) is the unit step function. Then,
+oo k

) = [elrmolale) = ) b exeyio) (1.5.6)
=0 i=1
and the problem is to find a sequence of estimates, ﬁi,n, which converge
to the p; for i=1,2,...K. For the case of independent samples, this pro-
blem has been solvedul The procedure used is still appliceble in our
situation.

A necessary and sufficient condition for the existence of the
sequence ﬁi’n is that the signals (the mean values of the gaussian density
functions) yi; i=1,2,...K, be distinct. The condition is clearly neces-
sary for if yi = Y3 we can not distinguish between the hypotheses 1,j,
or the a priori probabilities Ps pj. Sufficiency is demonstrated by

censtructing the sequence.

1
Robbins [31]. For a discussion of this general type of problem see H,

Teicher, "Identifiability of Finite Mixtures," Ann. Math. Stat., v. 3k,
1963, pp. 1265-1269.
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We will show the condition that the signals be distinct is equivalent
to having the K functions g(x-y;;c), i=1l,...K, linearly independent. Post-
poning this proof till later, we now give a procedure for estimating the

p;- Assuming that the g(x-yi;c) are linearly independent, define:

oo
g = fs(x—yisc)g(X-yj;o)dx = &yy-vyy; V2 0) (2.6.1)
-0
G = the Gramian matrix whose elements are 813 i,j=1,...K
hij = the elements of the inverse G
g&x) = the K-dimensional column vector whose i-th entry is

8(X‘yi3 g) .

Consider the wvector

g€(x) = otgx), (2.6.2)

whose i-th entry is given by

Kk
ghx) = Z hyy s(X-yJ-;o) (2.6.3)
3=1

Postmultiply g&(x) by the transpose of the vector g(x) and integrate each

element of the resulting matrix over x:
1 -1
J g(x) g(x)dax = G [ g(x)g'(x)ax = I. (2.6.4)

I is the identity matrix. Hence, g+(x) is orthogonal to the space spanned
i

by the g(x-yj;c), Jj=1,...i-1,i+1,...K:




K
/ eiKX) g(x-yg;o)ax = }: hiy J g(x-yj;O)s(x—yk;o)dx

1]
O

otherwise.

As an estimate of P, at the n-th stage take

o

H

-

=

[}

5 |
L\/Jg
(101
_+
k]
Y
~—r

1
s
ngliie
=3

}—h
[N
1
N
o]
*
1
<
’_‘

b B g(X)

]

[ ex(x)e(x)ax
K

}: D J g x)g(x-y 50)ax

J=1

=pi,

|
Observe that g;(x) is a bounded function

lel=)| <

2n o

Consequently, our previous theory is immediately applicable.

lobserve that the "active" part of the estimate is the inner sum.
h; . are constants computed before the estimating procedure begins.

i

(2.6.5)

(2.6.6)

(2.6.7)

(2.6.8)

By a proof

The
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which is essentially identical to Theorem 2.4.1, we obtain
Lemma 2.6.1: Under the hypotheses of Lemma Q.h.l, the sequences of
A .
estimates Py L i=1,...K, converge in mean-square to 1 with the variance

2

cf the estimate dominated by

2¢ .
5 {<pi~ﬁi,n>2} v, s 2= B

eno L-py

(2.6.9)

We have identified the random variable Z as Z(wj)=y_° That is, the
J

underlying probability space consists of the points w ={w ,ml..uwhu.a},
with P(mj) = py- Zl(wj) is then interpreted as saying that in the £-th
intervsal, ys was transmitted. The M-dependence assumption represents
transmission with a finite memory; the probability of transmitting yj
in the f-th interval and y; in the m-th interval is pﬁgl, which need
not equal pipj if Im-!i < M.

The extension to transmission with "infinite" memory comes essentially

from Theorem 2.2.2. TFor example, we can require that

m-{ T
Pij = Pyy T2 Py Py 88T e
and

n
R o)
I(p -p.p.)l < Ban, 0<Bd<1 . (2.6.10)

ig "yt - =
T=1

Then, the variance of the estimate is bounded by
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A 2 A . 2 o}
E{(pi-pin)} =V(pi,n) < 29‘3%_ (1 + 282 +KB3n].
nanto 1-px

(2.6.11)

1-53 1
Convergence takes place at the rate 1/n~ .

There remains to show that the g(x-yi;o) are linearly independent.

Assume they are dependent. Then, with aj # O for all i, the dependence

assumption gives

K
E: a;8(x-y550) = 0. (2.6.12)

i=1
1 2.2
Take the Fourier transform of (12) and divide out the common e 2

term:
K
}: a, Vi _ o
i
i=1
Multiply through by e_vak. Using the mean-value property
lim 1 [~ .
= JVX .
T+ o \/pe du = 1 if x =0

o
O otherwise

and the fact that the y; are distinct, we get that a; = 0, i=1,2...K.
This is a contradiction. Hence, the g(x-yi;o) are linearly independent.

The above procedure is clearly applicable to the case

~

1
The K* factor comes from bounding the term DT,2, i.e., summing (10) over
all i and j. See (2.2.41).
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K

az) = ) v, J u(z-y)aps(y) (1.4.3)
i=1

where the 5i(y) are known distributions and the set pi is taken as unknown.

The density function of the random variable X is

K
f(x) = }: Py fi(x)
i=1
where fi(X) = fﬁS(X'Y3U)dBi(Y)

Since the fy{(x) are bounded functions, so will the corresponding fi(x)
be bounded. Then, we need only require that the characteristic functions

of the distributions Bi(Y) be linearly independent.

2.7 SUMMARY AND GENERALIZATIONS

In this chapter we have primarily been concerned with the problem

of estimating a special, but not unimportant, univariaste density function

f(x) = [ glx-z;0)da(z) .

Given the sequence of dependent random variaebles X=N+Z, we have displayed
consistent estimates of f(x) and have obtained bounds on the rate of con-
vergence. We have given two methods of estimating f(x) and another method
of estimating the product s(x)f(x).

Tc apply the kernel method, one must recompute the contribution of
all past observations at each stage in order to obtain an asymptotically

unbiased estimate. Using a gaussian kernel, we have shown that this method
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k/5

gives a rate of convefgence equal to O(1/n ).l The estimate is & density
function in theat it is non-negative and integrates to one. No knowledge

of the underlying process is needed to form the estimate or to specify

the rate of convergence.

To use the first series method, we require a moment condition to
be able to specify a rate of convergence. No knowledge of the gaussian
process is needed to form the estimate. The eigenfunction representation
for s(x)f(x), on the otherhand, does require knowing the standard devia-
tion o . Both series methods may lead to estimates which, at some point
of the sequence, are negative over a finite range of x.

In practice, either series can be truncated with the remaining finite
number of coefficients estimated recursively. We have already pointed
out the dependence of the asymptotic error on the number of terms used.

We have also shown (Corollaries 2.4.1 and 2.5.1) that both series
methods converge in the manner required to guarantee the convergence of
the empirical Bayes procedure discussed in section 1.2.

Somewhat secondary to our purpdse, but worthy of mention, is the
fact that the Lz representation can be applied to the more general problem
of density estimation given & sequence independent observations. Suppose
the density function p(x) and its first three derivatives exist. Further,
assume that xsp(x),xzp'(x),xp"(x) end p(x)''' are Ly functions. Then,

using the technique in section 2.&, we can estimate p(x) with a mean-square

This assumes appropriaste conditions on the dependencies of the observation.
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/5)_ 4/5)

error = O(l/nl This does not compare favorably to the rate O(1l/n
obteined by the kernel method which requires a minimal amount of assump-
tions on p(x). However, in estimating a k-variate density function, we
will see that the series method, with the same type of assumptions as in
the univariate case, keeps the 1/n1/5 rate, while the kernel method leads
to & rate which is considerably slower.

With the exception of section 2.5, the results we have obtained are
not unique to the gaussian noise assumption, but to a class of processes,
of which the gaussian in the most prominent member. Specifically, the

technique we have used is applicable to any stationary bivariate density

1
function which can be expanded in the form

() (0)
pa(,9) = palx)po(¥) ) 8y, 03 (x) 8, (y) (2.7.1)
i,
with 855 = ] pa(x,y) e(ia)(x) ng)(y)dx dy (2.7.2)

and where p, and P, are the marginal density functions of pz(x,y). The
Gga)(x) are polynomials orthogonal with respect to the weight pa(x). The

Mehler formula is a special case of this expansion (with convergence al-

ready established) wherein, ’
, = 0, i j
alJ 4 1 % J
J
e ..
= =, i=3 (2.7.3)
gt

lEquation (1) is called the Barrett-Lampard expansion [3], and has found
other uses in noise theory [7,22,23].



J
K

8.(x) = Hej(x) (2.7.3)

That is, for the bivariate gaussian density, the expansion is diagonal
and pa(x) = ppx).

It is this expansion which gave the desired cancellation of the pro-
duct of the univariate geussian densities and the first term of the series
(2.2.11). Any bivariate density function which can be expressed as in
(l) will give the desired cancellation, for it is easy to see that, in gen-
eral, eo(x)= 1 and aoo=l. Hence, the first term of the expansion is just
the product of the univeriate densities. Then, in analogy to the develop-

ment in section 2.2, one can obtain the bound

11 lo(09) - pgmylaxay < ) sy (), (2.7.4)
1,3
where 1 and j are not both equael to zero. To dominate the variance expres-

sion corresponding to (2.2.8), the summability of

ii Z g ()] (2.7.5)

7=l 1,3

would be investigated. The interpretation of summability in terms of
the underlying noise process would now have to be made with reference
to all the moments of the bivariate density and not just the correlation
function as in the gaussian case.

In the Barrett-Lampard paper, the authors give another example of

a bivariate density which admits a diagonal expansion and for which the




u-

115

coefficients form a geometric progression. This is the case of narrow-
band gaussian noise subjected to an instantaneous square law envelope

detector. The expansion takes the form([3], Eq. 80):
2 J 2 2
b (xa%2) = pxa)olxe) ) (6 (r) L (/20" L, (xe/25%), (2.7.6)
j=0

where x; 1s the square of the envelope, xi=R?, and the density function of
R is given by the Rayleigh density. The polynomials in this expansion
are the Laguerre polynomials which are orthogonal on O < x <« with respect

to the weight

-X

p(x) = é? exp (;) (2.7.7)

The quantity u is defined as([3], Eq. 72)

[oe]

1
E(r) = s ffsn(fl) s (f2) cos 2n(fi-fz2)vdf; dfz
o O

where sn(f) is the power spectrum of the narrow-band gaussian noise and

00

o = f sp(f)dr

o

Assuming that p(t) <1 for 1 #0, (L4) reduces to

n

l Z _liz(_T) , (2’.7.8)

n 2
=1 l'“- (T)

in direct analogy to the development in section 2.2.
For the class of stationary Markov processes, Barrett and Lampard

show that if the bivariate density admits a diagonal expansion then the
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correlation function is an exponential function of time and the expansion

takes the form

o0
ANy oT
s ma)=px)plxe) ) o™ T 6 (x1)6,(xe) | (2.7.9)

J=0
T is the distance (in time) between the random varisbles X, and xz. Wong
and Thomas [47] have further characterized the Markov processes which admit
the above expansion. This class is composed of three distinct types, all
of whose univariate density functions belong to the Pearson system of dis-

. . 1 . .

tributions. This class consists of:

a) the gaussian density with the associated Hermite polynomials.

1 -
b) the density p(x) = ——— x% ¢™* and the associated Laguerre
M{a+1)
polynomials. For a=n- %, n;O,l,E,... we have the chi-square distribution,

and for Q=0 we have the case just discussed ((7)).

1 r(apr2)  (1-x)H2x)P

2Bl p(ai1)r(p+1)

which represents the Pearson type I system. This includes the uniform

¢) the density function p(x) =

density and the density function of a sine wave with unit amplitude and
random phase. The associated polynomials are the Jacobi polynomials which
include, among others, the Legendre and Chebyshev polynomials.

With the marginal density function of the Markov sequence given by

one of the above, the corrésponding bivariate density function is given

llI'heir technique 1s to reduce the Fokker-Plank equation to a Sturm-Liouville
eigenvalue problem. Necessary and sufficient conditions are then found

under which the eigenfunctions form a complete set of orthogonal polynomials.
These conditions include a differential equation which the univariate density
must satisfy and which characterizes the Pearson system.
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by (9).

In the context of our problem, these results can be applied not only
to the noise, but to the {Zl} sequence as well. For suppose that the den-
sity function of @ (21,22) is given by (9). Then, the quantity 57

2

(Eq. (2.2.41)) can be written as:

D
T2

I 6(x-2250)6(x-2230) @l (21, 22) <t (22)ar (22) | a2y aze

IN

/I la'T(Zl,Zz)-Ot' (z1)a'(z2)|dz; azs
5? e—)\'J'.T .
J=1

Consequently, a theorem analogous to Theorem 2.2.2 can be obtained with

IN

a rate of convergence determined by the growth or summability of the
quantity

= A
F L ) T
= n-rt e
= ) (o)
T=1

J=1

To extend the technique of section 2.5 to other noise processes,
Oone must solve an eigenfunction problem where the kernel is the corres-
ponding univariate density-function of the noise. We suspect, but have
not proved, that progress in this direction can be made for those processes
whose univariate densities are the weights associated with the classical
polynomials. These polynomials ([12], page 164) are just those polynomials
mentioned earlier whose corresponding weights belong to the Pearson system.

Most of the specific properties of the Hermite polynomials which we used
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are common to the classical polynomials. In addition, those polynomials
which are solutions to & Sturm-Liouville problem form a complete set and
behave (in an interval) as does the usual Fourier series (Hobson [18],

page 771).




CHAPTER 3

ESTIMATING THE DENSITY FUNCTION OF THE OBSERVATIONS —k-VARIATE CASE

3.1 INTRODUCTION

In this chapter our previous results are extended to an arbitrary
k-variate density function. For the univariate case, convergence state-

ments generally followed from the inequality

II lga(x1,%250,0.) - &(x150)e(xz;50) |ax;axz

< Jderl

1-|o,l

. (3.1.1)

This was derived in section 2.2, equation (2.2.15). In this chapter we

will be concerned with dominating the integral

IIle 1 (%1,%2;M ) -g (x1;8) g, (x2;8) [dx; dxa , (3.1.2)
2k T k k

where g, and gk denote the k-variate and 2k-variate gaussian density
functions. x3; and xo ére k dimensional vectors. xj represents the k
samples from the £f-th interval and xo the k samples from the m-th interval.
Both vectors have a covariance matrix A which, from the stationarity as-
sumption, is independent of the interval. The covariance matrix M, of

dimension 2k, is given by

{xl [x} ) x2]
(3.1.3)

119

=
It
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= |-l , (3.1.3)

with 7 = m~{, and ' denoting the transpose.

In the next section we majorize the 2k-fold integral by displaying
a transformation which converts (2) into k doubie integrals of the form
(1). This change of variables allows us to g0 diyectly to the Mehler
formula without any further generalization of the Hermite polynomials
introduced earlier. The majorant will now be a funcfion of the eigen-
values of a certain matrix and not simply expressed in terms of the cor-
relation coefficients. A rate of convergence can still be determined by
investigating the propertits of the autocorrelation function.

Having majorized (2), the extension of our previous results will
be obvious. For this reason we simply state the results in section 3.3,
commenting when there is a significant difference in the technique or

final result.

3.2 DOMINATING THE 2k-FOLD INTEGRAL

Define the 2k-dimensional vector u as

u» = {'Eé'} s (3.2.1)

and the matrix N (of dimension 2k) by

N = |--—7-—- . (3.2.2)
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Equation (3.1.2) is written as

[eg(wk )-g, (wsN)|au , (3.2.3)

with du representing the 2k differentials duy...dugg.
As already mentioned, we want to show that a change of variables
u=T-1lv reduces (3) to k double integrals of the form (3.1.1). What is

the same thing is to show that g  non-singular transformation T takes

MT into
I |
c ! R,r
T'MT = [-——7--- (3.2.4)
RO o©
e ]
and N into
[
, cC 4 O
T'MT = [|77757—- (3.2.5)
T o | ¢
L

Here, C and R are kxk diagonal matrices.
This simulatneous transformation is accomplished in two stages.
The first step is to reduce N and M to diagonal matrices. Let T; be

the transformation such that

ST
A2 0
T4 M Ty = A = . (3.2.6)
A2k
and
I
I | 0]
i
Ty, N T, = TTTYT T . (3.2.7)
0 ; I

This is the usual "double-diagonalization" procedure.
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The second step is the reverse of this process. That is, we then

show that there is an orthogonal transformation T such that

] I
C : R I R
T2 A T2 = [=—a=—=| = |-ccc-—-]. (3.2.8)
! '
R 1 C RL ; I

Since Tz is orthogonal (7) remsins invariant under this transformation.
The required transformation is then T=T;Ts.

From (6), it is not immediastely evident that A, (with 2k diagonal
elements) is similar to (8) which has k free parsmeters (the diagonal ele-
ments of R). In addition,uto apply Mehler's formula we will need the ele-
ments of RT strictly less than one.

We will establish that A and (8) are indeed similar, and that the
elements of R are less than one. The only assumption which we will make

is that Mt be a positive definite covariance matrix. By this we shall

always mean strictly positf%e definite.

What we are concerned with here is a generalized characteristic-
value problem, or what Gantmacher calls the pencil of quadratic forms.
We will use some results from Gantmacher [14], Chapter 10, section 6.

To avoid a proliferation of subscripts we drop the T subscript
for the present and since we are consistently dealing with vectors we
will not use any special notation for them.

Two reel symmetric quadratic forms M(x,x)=x'Mx and N(x,x)=x'Nx

determine the pencil of forms M(x,x)-AN(x,x). A\ is a parameter.
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Definition: If the form N(x,x) is positive definite, the pencil M(x,x)-
AN(x,x) is called regular.
Definition: The equation IM-KNI = 0 is called the characteristic equa-
tion of the pencil of forms M(x,x)-AN(x,x).

From (3), with M p.d. (positive definite), A is also p.d. since it
is a principal minor of M. Hence, N is p.d., and the pencil of forms is
regular.

Theorem %.2.1 (Gantmacher, page 310): The characteristic equation of

a reguler pencil of forms, |M-xN| = 0, always has 2k real roots Ay with

the corresponding principal vectors zjz(zlj, ), 3=1,...2k,

Zagr e rZag g

which satisfy
=NNz" , 3=1,2,...2k . (3.2.9)

These principal vectors can be chosen such that the relations

] . ) ' Y
N(z",2z°) =z Nz = 540 1,3=1,...2k (3.2.10)

are satisfied. From (10),”it follows that the zj, J=1l,...2k are linearly
independent.
The existence of the required transformation T, is assured by

2k
Theorem %.2.2 (Gantmacher, p. 314): If Z = {Zij}l is & principal matrix

of a regular pencil of forms M(x,x)-AN(x,x), then the transformation

X = Zy (3.2.11)
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reduces the forms M(x,x) and N(x,x) simultaneously to sums of squares

2k 2k

E: N Y }: 2 (3.2.12)
J yj ’ YJ s 5.c.

51 j=1

where A1,A2s...,A2k are the characteristic values of the pencil M(x,x)

2k of Z.

-AN(x,x) corresponding to the columns z*,2%,...,z

Conversely, if some transformation (x=Zy) simultaneously reduces
M(x,x) and N(x,x) to the above form, then Z is a principal matrix of
the regular pencil of forms M(x,x)-AN{x,x).

The first theorem is proved by writing (9) as N Mz = Kij and
then showing that N M is similar to some symmetric matrix for which the
characteristic values are known to be real, etc... The second theorem
is the usual statement of the double-diagonalization process.

As a consequence of Theorem 3.2.1, we know that the elements of A
in (6) are real. A further characterization is obtained by noting that
for any characteristic value and vector, we have

2 Mzd = agedhed 0 ge1,2,.. 2k (3.2.13)
Since M and N are both p.d., it follows that
A >0 3§ =1,2,...2k . (3.2.14)

We now want to show that k of the Kj are determined by the remaining

k characteristic values.

. z
Let z; and zpo represent k-dimensional vectors end write z = [-£;~},

where z is a principal vector of (9). Expressing M and N in terms of A
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and B, we obtain from (9) the following two equations:

(1-A)Az; +Bzx = O (3.2.15)
B'zy + (1-M\)Azo = O (3.2.16)

From (15) we have
(1-N)z; = -A"'Bz, . (3.2.17)

Multiply (16) by (1-A) and use (17) to substitute for (1-A)B'z,. Eguation

(16) becomes
((1-2)%A-B'A™*B}zo = O . (3.2.18)
In an analogous manner we obtain an equation for the z; vector,
((1-A)%A-BA™'B'}z; = O. (3.2.19)

The 2k characteristic wvalues \:

j must satisfy LM-KJNI = 0. They must

also satisfy the characteristic equations associated with (18) and (19).
It is not difficult to show that the characteristic equations of the sbove
two equations( (18) and (19)) are equal.l Therefore, we need only consider
one of them. ILet

r = (1-A) (3.2.20)

Equation (19) is written as

lBellman, R., Introduction to Mstrix Analysis, McGraw-Hill Book Co., 1960,
p. 9k.
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(r°A-BA™1B'}z, = oO. (3.2.21)

Observe thet BA™'B' is symmetric. Since A is p.d., (21) is a regular pencil
with the parameter r2. From Theorem 3.2.1, we have that there are k real
roots r?, J=1,2,...k, with the corresponding linearly independent principal

vectors zJ

l, J=1~,00Ok.

The characteristic equation corresponding to (21) is a polynomial
2
of degree k in r . Viewed as a polynomial of degree 2k in r, the 2k roots

are equal to i'f‘ri 5 J=1,...k. From the definition or r, we have

J J
(3.2.22)
xj+k = 1 -JI% = 1 - :r"j » J =12,...k.
Since Aj is greater than zero ((14)), we have the bound
lrjl <1, j=1,...k. (3.2.23)
Using these results, (6) can now be written as ‘
rilrl ]
1+rp 0
Léry (3.2.24)
™My = A =
l-r;
0
| l-fE-
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2
with the k values of r given by the roots of the polynomial

I
o

. =1 1 .
|A""BATTB' - rI| (3.2.25)

As an aside, we remark that the 2k principal vectors of (9) are

given by
J J
j z j+ z
0 R e P A - O I -
Jo | z2Y J2 -z2Y
where z;J and zzJ are the principal vectors (of dimension k) of (19) and

(18). It is a simple matter to see that the 2k vectors thus defined are
linearly independent. It is only slightly more difficult to show that
they perform the double-diagonalization, i.e., (12) is satisfied.
We now show that A, as given by (24), and the matrix defined in
(8) are similar. For this-it suffices to show that their characteristic
equations are the same.
From (24) we have,
k
| A =91 = I (125 -2y +57) . (3.2.26)
i=1
To evaluate the characteristic equation of (8), we need to specify the
diagonal matrix R. Choose the k positive values ry = +~f}§, J=1,...k,
and take R as

r

ra

R = . . (3.2.27)
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The characteristic polynomial of (8) is given by

I (3.2.28)

To determine this characteristic polynomial, we use the same argument as

in going from (15) to (19). We write

I : R

w W
__—1__-- __l_ = 7/ —_;_
R + I ¥z va

and obtain the characteristic equation for the vector w; (or wz),
((1-7)%T - B} w, = 0. (3.2.29)

The characteristic equation in given by I(l-y)ZI-R2|, which is identical
to (26). Hence, the existence of the orthogonal transformation Ts is
assured.

In the context of our problem, and to summarize the results to date,
we have

Theorem 3.2.3: We are given the 2k-order integral

f lgzk(u;M) - g(us) [du (3.2.3)
u
A | B, A, O
with M = [---d----- ,and N = | ---booo
B, | A o | A

If M is a poéitive definite covariance matrix, there exists a change of

variables
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u = T v = (T,Ts) v (3.2.30)
with |T| # O which takes (3) into
2k . ,
J .| liEl 82( vy, vy 157y) - L g(visL)e(vys1) vy, . .dvey

(3.2.31)

The A8 are scaler varilables and the k values of r? are given by the roots

of
o = [a7'BAT'B' - API) . (3.2.25)

Since Irkl <1, i=1l,...k, we can use Mehler's formula to majorize
(31). Let the symbol j # O mean "excluding the term Ji=J2=...Jk=0." Then,

using the expansion for the bivariate gaussian density, we have:

2k «
JooodJl I ga(vy,visk;l,ry) - T g(vy;1)g(vysl)]avy.. .dvay

i=1 i=1

, N

2k K i r*

= [+ [ |@ s(vi;l)g(viﬁk;l)zz T He, (vi) He (v )|
i:l . Ji' ji Ji
Ji=0
dvy...dvek, J # O . (3.2.33)

Bring the integrations inside the summation and bound the integrals as in

(2.2.14k)., We then obtain

Corollary 3.2.1: Let MT be a positive definite covariance matrix. It

then follows that

Jf | g2 (usM;) -gop(usN) [du <

u
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k o]
J
i
I }: r , 4 % 0
i=1 ! .
Ji=o
k 1
= _l + ]I M s (5'2’51")
l-r,
i=1 i,T
2
where ri, satisfies
-1 -1 .
[A™*B_A B'T-r?_,TII = 0, i=1,2,...k.

2
For k=1 we have A=], Bi=p , T
T

=% , and (33) reduces to (2.2.15).
1L,T T

The majorant in (34) will enter into the variance calculations summed
over T. We want to again interpret this sum in terms of the autocorrela-

tion function R(t). 1In analogy to section 2.2, designate

n
AR

T i=1 l -ry
T=1 T=l »T

- )
) zz wal . (3.2.35)

T=1

1ri )

u =

Let r*=min (1- ry T). Since lri TI <1, r, >0. Then, (35) is dominated
T>1 ?

by

2 3 Ld

n n
ZD’TS Z 1-11 (1er; ) > - (3.2.36)
T=1 T=1

Writing out this expression gives

n
DI < = }: }: r, T + ... +(-l)kr r  ...r
T - 1, T3, 1,T 2,T k,T

=1 T=1 1 j |
i + i (3.2.57
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The j-th inner summetion gives k./(j.(k-3)*) terms, where j=1,2,...k.

There are then 2k-l terms which are summed over 1. Since [ri Tl <1,
)

for all i and T, any term which contains a r, . @ a factor is dominated
b

by the single term r; . @ppearing in the first inner sum. Consequently,
2

(37) can be bounded by

n

- (&) ©
1 l 2 -1
Ej DT = Ty Ej k E: ri:T ) (5.2058)
T=1 T=1 i=1

From the Schwarz inequality we have

k > k
2
r < k r.
(L) =+ 5 2
i=1 i

i=1

and it follows that

n

k k 1/2
o -
Z D! < .(.__l_) z I‘2 .
T kl/2r i, T
T=1 *ooi=1
-1 -
The quantity 2 r? + 18 Jjust the trace of the matrix (A "BA lB').
b

Hence

n K n 1/2

\ 2 -1) z "1 -1,
ZDT < 172 trace (A "B A B') . (3.2.39)
T'—_l Ty T=l

(
k
The trace is the sum of k terms. Each of these terms involves the
product of the correlation function evaluated at different arguments. The

matrix A-l, which also involves the autocorrelation function, does not de-

pend on T but only on the manner in which samples are taken in a particular
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interval. Define:
-1 -
815 = elements of A
Rij(T) = elements of B, 1,3=1,2,...k
(3.2.40)
Re(T) = e IR, 5(
A(k =
(x) ZZ‘%J
The trace is given by
k
-1 -1 -1 -1
tra A BA B') = a. . & R T) R,
race ( ) }: Jida “Jada jajg(r) JlJ4(T)
51)32;33)34
Using the aebove definitions, we obtain the bound
-1 -1 2 2
trace (A "B A "B') < Ry(T)A (k)
and (39) becomes
n
2 -l
D! < Ak R
) o < 1/2 ) Z B, (")
T=1 k
n
ECINIOT (3.2.41)
=1

We are now in a position to use the results of section 2.2 to obtain

Corollary 3.2.2: If R(7) satisfies condition A, from (2.2.21), we obtain

1 1-8
Z D! < Bg(k) Gael - ) (3.2.42)
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If condition B is satisfied, then, from (2.2,23), we have

n

z D! < Bg(k) o> Bs . (3.2.43)
T=1

With the exception of when Bz is given by the Euler-Maclaurin summa-
tion formula, the constants B; and Bz have the same meaning as in section
2.2. To use the Euler-Maclaurin formula, rather than sum Rx(T) over T,
we first sum Rj(T) over j, Jj=1,...k, for each 7. That is, we sum all ele-

ments of the first row of B; for each T, and then sum over 1. Bz is now

given by (cf.(2.2.25)).

1
Bz = — | (x|R(t)| + |R"(%)])at
2 02[ l

3.3 ESTIMATING THE k-VARIATE DENSITY FUNCTION

Rather than introduce a new set of constants we will use the same

notation as in chapter 2 for those constants which play similar roles.

3.3a The Empirical Distribution Function

The k-variate empirical distribution function is given byl
n ¢
1
F(x) = = U, (X,) . (3.3.1)
n L

n'=
=1

The random variable Uz(él) is defined as

The notation y is used to designate a vector.
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(A
| >

(3.3.2)
=0 otherwise

é! 1s the sample vector in the [-th interval, so that by 51 < X we mean
the set of inequalities Xti < Xy, i=1,2,...k, {=1,2,...n. In analogy to
Theorem 2.2.2., we hawe

Theorem 3.3.1: Given the sequence of identically distributed stationary

random vectors zi =N, + gi’ with the k-variate density function

£(x) = [ g (x-2;4) dofz). (3.3.3)

Define:
D, = I 6, (y2-21;4) Gk(zz-gzsA)[dOlT(_Z_l;Ez) -
colz)anze) | - (5.5.1)
where
¥
Gr(y-2;4) =f ex(x-z;A)dx
and
o (21,22) = Pr{‘zg SZ1os Ly 5_52‘—%*‘

Assume

i) R(t) satisfies condition B

ii) D_ , satisfies
A
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D = Bg <o .
Ty,2 3 ®

Then, the empirical distribution function is a consistent estimate with

the variance bounded by

24 (F(x)£,(0))" p = V(F,(x))

S

<= [1 + 6 o® By

3.3b The Orthogonal Representa

k) Bz + Bga]

tion

The k-variate density func

fx) = f0rame, om0 = )

Ji

1
tion (3) is expended in the series

z ajl oo dk c‘Pj(xl/gl) .o 'chk(xk/Uk)
Jk

(3.3.5)

(3.3.6)

The @'s are the one-dimensional Hermite functions as in (2.4.3). We will

write (6) as

f(x) = }: 2, ?5(x)

The estimate of Eﬁ at the

J
A

n-th stage is denoted by Ejn s

L
n

cpj(z ) .

T

(3.3.7)

(3.3.8)

These estimates are unbiased. Since the function ®j(§) is bounded (see

-1/2
lf(_}g) is bounded by [(ZH)klAI] /

and therefore it is Lo in Rk'
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(2.4.7)) vy

\ k o, k/b 1/2
IQJ(X)! < cp /(n / "(0102...0¢) ) = ca, (3.3.9)

in analogy to Theorem 2.4.1 and using Corollary 3.2.2, we have
Lemma %.3.1: Assume the sequence of vectors[él} is M-dependent and that

R(t) satisfies condition B. Then,

E{(aj-_%nf}= VE ) < 22 (14 o Be(k) Bo + 2(M1)) = S .

—Jn n n
(3.3.10)
2 2 Bo
For k = 1, o~ Ba(k) Bz = , and (10) reduces to (2.4.10).
1-py
As an estimate of f(x), we take
a1(n) qg(n)
A A
fn(z) = SN ¢5,(x1/01). .. @jk(xk/ck)
§1=0 Jg=0
We shall set q; = ... = 9 = 4, &nd write the estimate as
a(n)
A A
£ (x) =EE:‘E' o (x) . (3.3.11)
n Jn J
§=0
Assume the r-th absolute product moment of Z exists:
T
[eor] 12122-°~Zkl da(zl,ZZ,u,.zk) <w, T>2. (3.3.12)

Then, Lemma 2.4.%3 can be directly extended to k dimensions. This results

in the bound

a2 = & s S Be/(J1--4d%) (3.3.13)
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and we have

Theorem 3.%.2: The MISE of the estimate is

o0 oo
J =B [ (f(x) - % (x))%ax = }Z "'}: 8"
n = n'=>7, "= Jieeedx
j 1=qtl jk'—' g+l

q q
A 2
+ E(a. . - . . R
EZ Ej ( Jieedy aJl-~°Jk)

jl=o jk=0

With (12) end Lemme 3.3.1 holding, we obtain the bound

k
1 1 1 .k qec
J <B —_— = =3 .3.1h
n <P (777 = qr) * = (3.3.14)
1

Choosing ¢(n) as the largest integer < (Ben/ca);E , the MISE satisfies

r-1

J, = o1/ T). (3.3.15)
This is the same rate as in the univariate case. Naturally, the actual

bound is different. The constant Bg in (14) is now the Lo norm of a

function defined in Rk' This function is

r

-1 ' s
(g(x1301) .. .8(x50,)) zz ———— (0,"9%. .0, %K)
Jitdalh . gy

r
d

dlel...dkak

[£(x1.. x)e(xas01) .. alxgsop)]

k
where the summation is to be taken over all possible integers withzz ji =7,

i=1
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To investigate the mean-square error, define the function

fq(z(_) =Z ..'Z ajl..'Jk ch(xl/cl)'-- (p,j(xk/ck)
J1=0  jy=0
k (3.3.16)
As in the one-dimensional case, this function converges to f(x) pointwise

end uniformly in any finite intervel. In particular, with r > 3, we have

the bound

k

1-1).

(3.3.17)

+
-1

l2(x) - £4(0)] <c2JB_6‘<(

r
-l) a3 2

In analogy to Corollary 2 4.1, we obtain

Corollary 3.3.1: Assuming that Lemma 3.3.1 holds and that (12) is true

with r > 3, we have

En{<?n<>gn> - f(zcn))jL
2
. k
%2\/_—‘(( -l) l+ ql-£> e J;z}

2
(3.3.18)
1/rk
Upon choosing q ~ 1/n , 8s n * o, the mean-square error satisfies
r-2
A 2 -
En{(fn(}_cn) - £(5y)) } o1/ T) (5.3.19)

Observe that this is the same rate as in the univeriate case.
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3.3c The Eigenfunction Representation

We shall assume that the covariance matrix of the noise A is known
and that the observation vector is "pre-whitened,"” i.e., we apply the

1/2

transformation A~ ‘ to the observation vector‘gz. The new data vector
. aml/2 1 : . , .

is A (El +.§l)c What this does is to make the resulting gaussian
noise samples within an interval independent. The noise vectors in
different intervals are still correlated with a cross-correlation matrix

-1/2 -1/2
equal to A / B A . Note that the characteristic polynomial for

2

r~ remains the same. Hence, Corollary 3.2.2 is applicable without change.
We assume that the data is pre-whitened without changing notation.

The density function of the observation vector is
f(xl,o..xk) = [oorf g(xl-zl;l)o..g(xk-zk;l)da(zl...zk) (3.3.20)
which we write as

£(x) = L/\ gk(i-gsl)da(g) . (3.3.21)

With @j(g) given in terms of the Hermite functions

05(2) = 95, (z1/02) @, (22/01) ... 04 (z,/02) , (3.3.22)

where o, > 1, define

lAll that is necessary is to transform the data vector so that the result-
ing covariance matrix is diagonal. For purposes of notation, it is more
ccenvenlent to have the resulting covariance matrix equal to the identity
metrix. Hence we use A"1/2. Since A is (strictly) positive definite,
a-1/2 is well defined.



= d, .= k/ﬁ o (z)do(z) .

d.
—=J Jloo-Jk ) J

The coefficient gj is uniformly bounded in j and z,

k
la. = la. . c .
a5l = ey, g0 < (:7*‘1 .u0>

Let,

s(x)

k
k /b exod _ L 1 < 2
=<ﬁ> P{ 2 (0,5+1)(0,%-1) Z 3 }

0'12-1

and define

£ _ 0'_12-1
N 012+l
2 (0,5-1)(0,5+1)
7 = o
Oa1

In anslogy to section 2.5, we obtain the expansion

o0 [e o]

s(x)£(x) = ;Z oo.}: (§jl"°§jk)djl---3k @jl(xl/y),..@jk(xk/y)

J1=0  Jx=0
J

J

(3.3.23)

(3.3.24)

(3.3.25)

(3.3.26)

(3.3.27)

This series converges in mean-square and uniformly in x. We also have

the uniform bound
q 2
. g+l
|s(x)£(x) Z 4 & o.(x)] ,<_< i & >
J J N/ oy Y (l'g)

_ Cl2 ¢ q+l 1 >
Joo (1-8) (o1* -1)
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The unbiased estimates of the coefficients are
n

£d, - ) e apu) (5.5.29)

£=1
Using Corollary 3.2.2, we have

Lemma 3.3.2: Assume that R(t) satisfies condition B and that the sequence

[g!} is M-dependent. Then, the variance of the estimate is dominated by

. 2
V(S?Qj) < ELEA;_<{} + Bs(k)0232 + Q(M-l):} =cs/n . (3.3.30)

n

where c4 is defined by

/b ok
ij(z)s(z)ls{ﬂl;i\[y [Q’,;ﬂ
k
:;u (7;1&/2 i 2

The estimate of s(x)f(x) is taken as

q q
S(E)gn(z) - z ...z g(Jl"'...Jk) Sjl"'Jkl @_J(xljcl)...qJ(xk/
J1=0 jk=0

& .
=LV g0 (5.3.32)
3=0

In analogy to Theorem 2.5.2 and Corollary 2.5.1, we have the follow-

ing results.

Theorem 3.3.3: Under the hypothesis of the previous lemma, the MISE is

dominated by




1lho

J = E J(s(x)f(x) - (2%, ()% ax
2 2 . k
C1 . g 2q el
< £ + 859 (3.3.33)
- <n1/2 01(1-£%) > n
Choosing q(n) as the largest integer < ;k -Tn—n_l , We have
In §
oo < c)” . 1, cs (tn )" (3.3.34)
T\ 168 Y (Imgla)® n
or
_— k
Jn = 0((4n n) /n)

/
Corollary 5.5.2: Under the hypothesis of the previous lemma, the mean-

square error in the estimate of the random variable S(}_(n)f()ﬁn) is bounded

£, (o0, (2) a(xa) b
2 q+l k k 2
<d (=2 g ) + (=S s qk}
'{ Vi (01%-1)(1-¢) 7y J?

(3.3.35)
Letting q be the largest integer < cp + —2-B— gives
= 2k | Int |
2 C7 k k
d 1 c 1l inn
w0 @) E k)
’ {<\/—ﬂ (01%-1)(1-¢) Vn ! 4 2k |int|
25. 2
a ) (3.3.36)

or,

En( ) = (!nn /n
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The constant c; is not given explicitly as in (2.5.53), but would be de-

termined by minimizing (36).

5.5d The Gaussian Kernel

The estimate of f(x) is taken as

n

Px) = 2 }Z g (x-X 3H) (3.3.57)

1=1
With H a diagonal matrix with i-th entry equal to h?, (37) is Just the
k-dimensional version of (C.l1). We take H as this diagonal matrix.

The expectation of the estimate is
A
Ef(x) = Jaz)g(x -z &+H) (3.3.38)

As in section 2.3a, the bias is dominated by considering the expression

/
(Efn(ﬁ) - £(x)) and expanding in a Taylor series. Since the kernel gk(z;H)
is an even function in y, the first and mixed second derivatives drop out.

We obtain, as n > « and hy, + o, i=1,...k,

k

k/2 Pr(x)  »

B £(0)-£(x) > = (21) —2nt o(n,"). (3.3.39)
1

i=1

The variance expression is

v(r(x)) = % {E(gg(z-zi_;ﬂ) - EE(g(gg-}_C_;H]i}

‘2 z z E( gl x-X ;5 B) g x-Xg3H))
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-E(g(z-fl;H)Eg(z-zgn;H)} (3.3.40)

Using (38), the first bracket is bounded by

k -1 -1
%{EQn)z (hy...hy)|A + gl:l + BZn)klA + H|:] } (3.3.41)

For the second expression, the term inside the double summation is given

1
by

Qm_g=ff daz1)do(zz) |gok(x-21,x-22;MH) -

Z1 Z2

ggk(i'él:é-iz;mﬁ):] . (3.3.42)

~ HIO ~
M and N have the same meaning as before, and H = {é{-é] . Since M+H is
1
positive definite, we can apply the transformation of the previous section
to the expression in the bracket in (42). We then dominate the resulting

expression using Mehler's formula and Cramer's bound (see(C.8) and (C.9)).

The result is,

i=1 l'ri,T

c2 k k 1
Qg = 9 < (;) l:-1+n —} . (3.3.43)

The r? . 8re the roots of I(A+H)'l B,r(A+H)'l B - °I|. Use Corollary

)

5.2.2 to obtain

2 c3\* o®Bg(k)Bs
n® Tt - 2n n
I n

1
Here, we assume the sequence {gl} is independent.
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The constant Bg(k) is defined differently since A(k) is now the bound on
-1
the elements of (A+H) .

The varisnce is dominated by

A 1 c? k 2 1 1
v(f (x)) < o (5;) Bg(k)o B2 + (o )k |A+H]
+ L L
(20)%"| A+ gl (hy...hy)
- b__]_ + bo bR I
n n(hl....hk)] ( 5 )

k
SR TR S (3.5.45)
= 5 1J 1 7]
n(hihs ‘hk) i,3

where the bij are constants which bound the second partials in (39).
We have not made much progress in selecting the set hi so as to minimize

(L5). The obvious thing to do is to set h1=..ohk=h. Then, it is easy

1/(k+h)

to see that h is chosen proportional to 1/n nd

E{< fn(zc_)-f(z))a}= o(1/n* /¥Ry (5.5.16)

From the way in which we have taken the estimates, it is not surpris-
ing that the assumptions needed to specify a rate of convergence (for all

three methods) are direct extensions of those needed for the univariate
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case. Thus, throughout this chapter we have assumed that the covariance
matrix M_ is (strictly) positive definite. 1In Chapter 2, we required

the same thing by taking IpTI <1, i.e., for k=1,

=
n

and |p.| < 1 implies that M_ is positive definite.

To use the eigenfunction representation, we take the covariance matrix
A as known. For the Lp series, we require a product moment assumption in
order to specify a rate. Again, no knowledge of the underlying process is
required to form the kernel estimate or to specify a rate of convergence.
The eigenfunction representation gives essentially the same l/n rate as
in the univariate case: for the MISE we have the rate (ln(n))k/n and for
the mean-square error we obtain (ln(n))ak/n. With a r-th product moment
assumption on the vector Z, we obtain the same rate of convergence for
the Lo series as in the univariate case. The kernel method now gives a
slower rate—the reason being that the bias in the estimate is still O(hu)

while the variance term is now O(l/hk).

TS




CHAPTER U4

APPLICATIONS OF THE EMPIRICAL BAYES TECHNIQUE

4.1 INTRODUCTION

We now apply our results to some problems in communication theory.
As discussed in Chapter 1, we will be concerned with procedures which
converge to what we have called the optimum one-stage test. To reiterate,
this test uses only the present observations for the present test and,
as such, is truely optimum only when the sequence of observations is
independent. The empirical sequence of tests makes decisions on the
same basis as the one-stage procedure, but it incorporates all past
observations in updating the estimate of the test function. Further-
more, we will take a sequence of tests, the test function of which is
identical in structure to the test function one would use if all dis-
tributions were known. It does not follow, especiaslly in the small
sample case, that this is the optimum thing to do. What we expect
to show is that when we are repeatedly faced with the same decision
problem, our sequence of test functions will get closer, in the mean-
square sense, to the one-stage test. It then will follow from the
results of section 1.2 that the empirical risk will approach the risk
incurred by using the one-stage procedure.

So far, we have considered estimeting the marginal density function

of the observation which, in general, can be written as

147



148

f(x) = [g(x-z;0)da(z). What remains is to show that we can extract

from the estimate of f(x) those quantities needed to form & consistent
estimate of the test function. In the supervisory mode, there is no dif-
ficulty in finding these consistent estimates. Since we have available
samples which are correctly classified with probability one, we can esti-
mate the particular density fj(x) from which it was drawn. As would be
expected, obtaining consistent estimates of the test function is more dif-
ficult when operating under & nonsupervisory condition.

In the remainder of this section, we discuss the problem of trans-
mission through a random unknown channel when learning samples are
available. This problem relates the results of section 1.2 on the
convergence of the empirical procedure with the results on density
estimation. It also serves to indicate when we can expect to find
a solution to the nonsupervisory problem.

In section 4.2 we consider the problem of transmitting known
signals with unknown & priori probabilities.

The problem of communication through a random multiplicative
channel is considered in section 4.3. This problem is discussed in
some detail since, for the case of small nonlinear distortion, a first-

1
order analysis reduces to an analysis of a multiplicative disturbance.

lOne of K signals, yi(t), is transmitted with gaussian noise added to

a distorted version of the signal. The received waveform is x(t) =
n(t)+yi(t,t), where T is, say, a random delay with known mean value T,.
If, for example, the variance of v is small, we write T=7o+At and ap-
proximate x(t) by x(t)=n(t)+yi(t,TO)+AT(8/BT)yi(t,T.)|T=T . Then, At
is taken as a zero mean random variable with an unknown distribution.
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A problem with an unbounded loss function is discussed in section L.k.

4.la Communication Through en Unknown Random Channel—Supcrvised leerning

Suppose we transmit one of two signels, yo(t) or yi(t), with a
priori probabilities p, and p; = l-p,. The signal is passed through
a random unknown channel. We take the output of the channel to be a
stationary random process z_(t) or z1(t), depending on which signal

was transmitted. The received waveform during any interval is then
x(t) = n(t) + zi(t), i=0,1, £ < t < (£+1). (4.1.1)

The density function of a single time sample is

£(x) = p, £,(x) + p1 £1(x) (4.2.2)

where
£.(x) = Je(x-z550)da(z) (4.1.3)
f1(x) = Je(x-z150)aB(z1) . (4.1.4)

The distributions « and B are taken as unknown and may or may not be
1
related.
The statistical inference problem is to decide, with minimum proba-

bility of error, which of the two processes zgo(t) or z;(t) is present

la and B would be unrelated if, instead of transmitting known signals

through a random channel, the problem was one of sending one of two
unrelated random signals to which gaussian noise is added.
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during each interval. The one-stage procedure is to evaluate the test

function

T(x) = p1 £1(x) = py £,(x) (L.1.5)

and compare it to a zero threshold.

Suppose that we have an estimate of T(x) and, after we have made
a decision, we are told whether or not the decision was correct. In
this "supervised learning” situation, we can use the observation to
update the estimate of the density function from which it was drawn.
We now have a better estimate of the particular density and the test
function which we subsequently use for the next decision. Assuming
Po 1s known, the error in the estimate of the test function after :the

n-th decision would be

T (x) - 2x) = pa(£a(x) -1 (1))-polfe(x)-F, ()
1 Ng

(4.1.6)

n; is the known (after a decision is made) number of occurrences cf

. . ~ 2
yi(t) in the n intervals, ng+tm=n. Let Vinj=£&1%(fi(x)‘finj(x)) } .
Then, by the Minkowski inequality, we have

A 2 ~ ~ 2 P
Enq (Ty(X ) -T(X))" > <(pa 7ap, * b, 75 ) =7y - (%1.7)

n
o

Hence, to guarantee that 7n tends to zero, say at the same rate as for
the case of independent samples, we need to require that the autocor-

relation function satisfy condition B, e.g., it be integrable and
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eventually monotonically decreasing. In addition, we need a weak de-
pendency amongst the samples derived from zi(t) as reflected in Theorem
2.2.2. Furthermore, to guarantee that the probebility of error Pon
converges to P (the probability of error using the one-stage test),

we also require that (see Theorem 1.2.2)
a) f£;(x) #0 a.e. x, i=0,1,

and to be able to specify a bound on the rate of convergence of Pen

it is sufficient to assume that

b) f£i(x) is analytic, i=0,1

c) fi(x), i=0,1 are linearly independent, i.e., unequal.

From (3) and (4), we see that conditions a and b are satisfied
as g(x-z;0) is non-negative and analytic. If o and B are unequal then
condition ¢ will be satisfied.

We will illustrate the estimation procedure with the eigenfunction

representation. As in section 2.5, define:
“+oo

[ oytefonana)
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’ - (“12"’22612”2) =(61222)2 2 (4.1.8)

Multiplying (2)-(4) by
) - - exp £ 2y (4.1.9)

gives

s(x)fo(x) = Z gj a; cpj(x/y) (4.1.10)

3=0
s(x)f1(x) = i é‘j o cpj(x/y) (4.1.11)

3=0
(x)2(x) i % (pody + maey)0y(x/7). (4.1.12)

3=0

A test function equivalent to (5) is given by

STx) = ) (maesord ) o (x/n) - (3.2.13)

Operating under a supervisory condition, we meke a decision and
. . 1 .
then we are told from which population X, was drawn. Assuming X, was
drawn from fi(x), we then update the estimates of e; 8s in section 2.5.

At the end of the n-th decision, our estimate of the test function would

be

Perhaps more appropriate to communication type problems, learning samples
can also be provided by transmitting a known sequence Yo1¥15¥5s¥1, €tc...
interspersed with the message sequence.
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Q1(n1)
) = m ) G 8o /)
§=0
9o(n5) _
- ZO U, g @5(x/7) - (4.1.14)
iz

Supposing that each qi(ni) is chosen as in Corollary 2.5.1, we obtain

the bound

En{;(xn) (Qn(xnwr(xn)):?} (7)% = o(18°n,/n,) (4.1.15)

where n, = min(no,nl)a Hence, from Corollary 1.2.2, the difference
between the probability of error of the empirical procedure and the

one-stage procedure is bounded by

2(rp
—=— +8'(¢)) (4.1.16)

0 < Pep -P, <

. 2
where 8'(e) = Prq |s(x)T(x) | <.E:}.and (7n) is given by (15). Therefore,

with the above assumed dependencies on the observations, P, converges
2
at the rate In"ny/n,.

Recall that the constant o; is chosen greater than o but otherwise
arbitrary. We would naturally choose o0; to minimize the difference
between P_ and Pe. To illustrate how o; enters into (16), suppose
we truncate the series (14) at g+l terms. Then, using the bound in

2
(2.5.37) for (75) , the asymptotic difference in the probabilities of

error is dominated by




15k
4 - 29+l
o 2_q2
0 < lim Pen-Pe < —24 2 1 (037-0%) +8'(e)
€ 7 4 2g+
-0 Ll.o' (012+02) at+3

(Lh.1.17)

The closer o; is to o, the smaller the first term of (17). On the other-

hand, from (8) and (9) we have

[T 2 52
s(x) N _12—2 R U
e (014-04)

1

IN

and 8'(e) is seen to increase as o, approaches o.

One possible procedure to follow would be to choose o, so that
8'(e) is less than some preassigned small number A. Then, q is chosen
large enough so that the first term of (17) is also less than A.

When more than one sample is used to base a decision, the assump-
tions and results are direct extensions of those for the univariate

case. Thus, if we took k samples for each decision, P

ep Would converge

2k
to (a smaller) P, at the rate O(1n nx/nx).

This discussion assumes that we operate in a supervisory mode and,
if one is willing to use a one-stage (or finite-stage) test, the pro-
cedure Jjust outlined is straightforward and provides a solution to a

variety of problems.l However, the above formulation and solution are

lIncluded in this formulation is the case of non-coherent communication.
By restricting attention to a one-stage test we do, however, exclude
the case of intersymbol interference.
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not the best we can do. The above procedure has eliminated the signal
design problem—the known signals y,(t) and y,(t) do not influence the
convergence of the procedure, This has come about as we have neglected
the relationship between a(z,) and B(z,). A relationship certainly
exists as the channel presumably distorts both signals in the same manner.

That some relationship between a(z,) and B(z;) must exist and be
utilized in order to learn when operating in a nonsupervisory mode is
almost obvious. For, with no knowledge of the relationship between
& and B, there is no way to extract from f(x) consistent estimates of
fo(x) and f1(x). In contrast, if a and B are equal then f, and f, are
also equal and there is no longer any statistical inference problem.
It is somewhere between these two cases where solutions to the non-
supervisory problem are to be found.

One such case is the transmission of known signals through a
random multiplicative channel. We consider this problem in section
4.3 where it will be seen that the nature of the signals enters into
the bounds and, in fact, determines whether or not consistent procedures
cean be found in the nonsupervisory mode of operation. For the super-
visory mode, the rate given above in (15) will be improved upon with
n replacing n —the point being that, in some cases, both sets of

coefficients, dj and ej, can be updated at each stage.

L.1b The Detection of Noise in Gaussian Noise

We want to mention a somewhat different application of the eigen-
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function representation, the detection of noise in gaussian noise
when all distributions, including the a priori probabilities, are
known. The application has the unusual aspect of incorporating a test
procedure which 1s sequential in the number of terms of the series
used for the test.

For simplicity, we restrict our attention to decisions based on
a single sample. Using the notation of the previous sub-section,
assume one of two random processes, z,(t) or zi(t), is transmitted
with a priori probabilities p, and pi. With the distributions
o(z,) and B(z1) known then, in principal, the coefficiénts d; and
€j are known. The procedure which minimizes the probability of an
incorrect decision is to evaluate (15) and compare it to a zero thres-
hold.

Consider truncating the test function at g+l terms,
q+l
J
SOTx) = ) (mae,-pgag)t oy(x/7) (1.1.18)
J=0

From (2.5.13), we have the bound

q . ' q+l
[s(x)f (x) - Z £ djcpj(x/y)l < o1 & (4.1.19)

320 Vioyy 1-%

with an identical bound for the truncated series for s(x)f (x). Then,

the difference between (13) and (18) is dominated by
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q+l , -
o2 £ 2 £9 1/2
Jroyy 1-8 (o +0)  1-¢

ls(x)(T(x>-Tq(x))l <

Hence, if for a given observation X, the value of s(x)Tq(x) is greater
in megnitude than the right side of (20), the decision using the trun-
cated test function is the same as when the complete series is used.
Again, we would not pick él arbitrarily close to o so as to make
€ arbitrarily small. All this does is scale down the possible range
of values of s(x)Tq(x) and s(x)T(x). Specifically, from (2.4.3), we

have

g(x/y)Hy(x/7)
EFYNran (2:4-3)

wj(X/r)

and s(x)Tq(x) becomes

e q
2
s(x)Tq(x) =1 exp | - i—; —3 Z §'j
yNn 2 8 (0,2402)? 3=0
HJ(X/Y)

(plej-podj) (4.1.21)

NESIT
Having fixed the value of o, the procedure would be to evaluate
the first q; terms of (21) and compare the megnitude to (20). If the
magnitude is greater than (20), we announce hypothesis H, if s(x)qu(x)
is positive and Hy if it is negative. If ls(x)qu(x)l is less than (20),
compute another term of the series and recycle. In this manner, we

expect to eventually meke a decision which would be identical to the
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decision based on the originesl test function. The value of q at which
the procedure terminates is a random variasble whose distribution depends
on the value of o0, chosen, the coefficients djy and ey, and the observa-
tion X,

There is no theoretical difficulty in extending the procedure to
a finite number of samples. We use the nonsingular transformation A'l/2
to whiten the gaussian noise. Then, for example, the vector 2y 1is
transformed into ZO with a distribution a(Al/ 250 ). The difficulties,

of course, are in inverting A and in calculating the coefficients gﬂ'

4.2 MULTIPIE (SIMPLE) HYPOTHESES WITH UNKNOWN A PRIORI PROBABILITIES

We consider the problem of detecting one of K+l known signals when
the a priori probabilities are unknown. In each time interval,
L <t<I+1, £ =0,1,..., a signal yj(t) is chosen with a priori
probability Py J=0,1,...K. Zero mean, correlated gaussian noise is
added to the signal. The received waveform is then x(t)=n(t)+yj(t).
In the next sub-section, we consider the detection problem with a finite
number of time samples. In sub-section 4.2b, the Karhunen-Lodve ex-

pansion is used to obtein limiting forms.

4.2a Finite Number of Observations Per Decision

Under the J-th hypothesis, the density function for k time samples

x=(x1,%2,...%,) is given by

fj(z) = eg(x-ys;h) (k.2.1)
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where A is the non-singular covariance matrix of the gaussian noise

vector n, and y: represents the k samples of the signal y:(t). The
a L3 d

overall density function is

K
) = ) pgtyln). (1.2.2)

J=0
For & minimum probability of error test based on k samples, as

discussed in section 1.2, we form the (K+l) test functions

TJ(E) = Pj fj(ﬁ) - Po fo(i): J =0,1,...K. (k.2.3)

The decision function is tj(§> =1if T (x) > Ti(z), i=0,1...K, and

J
tj(§) = 0 otherwise.

Suppose that the set of a priori probabilities are unknown. Then
in (3), we use estimates of these quantities which are updated in every

trensmission interval. In the n-th interval the error .in estimating

the test function is

A A
Tpy(2)-T5(x)) = (pyy-py) £5(x)-(pyn-po)Eo(x, ), 3=0,1. . K.
(k.2.4)
B A .
X, denotes the n-th sample vector zn = txln’xgn°'°xkn]‘ pjn is
naturally a function of all the observations {§£}, 1=1,2,...
. \k/2 1/2
Observe that f:(x) contains a common factor (1/(2'n) / |A] / )

J

which can be cancelled out of the K+1 test functions. We assume this

has been done in (4), but keep the notation unchanged. Since fj(ﬁ)
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A
is a bounded function, for asny unbiased estimate Pjns We have

En{z b1apy) f (x} < v(gjn)/(en)k/gml/e (4.2.5)

The mean-square error of (the modified) equation (4) is dominated by

E {T (X )-T (X )ﬁs ( JV(Pjn> + ‘JV(/I;on) )2 = 7§n:j=l:2)"'K'

nj‘=n

(k.2.6)

Notice that we begin the index at j=1 since we would naturally set
A
Tpo(X)=0, vwhich equals T (X).

The inequality in (6) is the bound we need to dominate the dif-
ference in the probabilities of error. Let Pen be the probability of
error using the empirical procedure and P, the probability of error
when the a priori probgbilities are known. In analogy to the equation
above (1.2.40) and to (1.2.46), which are valid for one sample per

interval, we have for k samples per interval:

K
P, = 1-p, —Z ij(i)dE

=0 A.

9= 4 (k.2.7)
AJ_=AJ,{§:TJ(5) > T4(x), i=O,l,...K:},

and

2

)
o<z, - z{ w(ja” JNINCINEY (¥.2.8)

with Yon set equal to zero. The subscript u(j) plays the role of k in
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(1.2.46) since, in this section, k is the number of observations per
interval. In addition, here we let u=u(j) depend on the index j.

The reason for this is as follows. Recall that ¢ is an arbitrary

Ju(y)
constant and 8j,(s) = Pr<{}Tj(§)-Tu(§)| < eju:} . One would like to

choose the subscript u, u(j)=0,1,...K, so that SJ ( is a minimum for

u(J)
each j. This involves solving for the roots of T;(x)-T,(x)=0 in terms

of the signals and a priori probabilities and then, perhaps by lineari-

zation of T--Tu’ obtaining bounds for the Bju in terms of the signals
J

. and .
Yy 8nd y

There remains to estimate the pj's so as to bound the difference

Pen-Pe' To do this, we proceed as in section 2.6. We use the sequence

of observations X, with i fixed (e.g., the first component of each
observation vector) to obtain an unbiased estimate Sjn' Assuming the
samples of the signals are distinct, yij+yijl,j,jl=0,l,...K and
i=1,...k, there are k such sequences available which give k unbiased
estimates of Dj- These are then combined in & linear fashion.

Taking the sequence of observations xi£,2=1,2,..,n, the density

function of x,, is
if

K

f(xy,) = E; ;ﬁg(xiz-yijl,O)
J=0

We assume the samples of the signals, vy j=0,1,...K, are distinct.

gj’
Then, the estimate of P, is taken as (see (2.6.6)):
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n
l ™
by = 2 ) &)
£=0
K n
-+ h g(X, ~y. ,30), 3j=0,1,...K
n iv 197 1vg?9)s 970,15 K.
v=1 £=1

Now, assume that the autocorrelation function of the gaussian noise
is integreble and eventually monotonically decreasing {condition B).
Assume further that the signal transmitted in a particular interval
can depend only on the signals transmitted in the previous M-1 intervals
(M-dependence). Then, the hypotheses of Corollary 2.6.1 hold and we
obtain V(gjn)=0(l/n). Using this in (8), we have Pop converging to
P. at the rate 1/n. Convergence also takes place at the 1/n rate with
an "infinite transmission memory" if the conditional a priori proba-
bilities satisfy (2.6.10) with 3=0.
A
The above procedure gives no guarantee that the estimates pjn
are probabilities. In practice, we would want to normalize the estimates
K

A A
so that 0 < Pin <1 and 2 D
J=0

=1.
n

J

4.2b Limiting Forms

The application of the empirical Bayes procedure to the finite
sample case is straightforward. This is not so when limiting forms
are considered. To use the Karhunen-Loéve expansion, we make the follow-

ing definitions:

lSince all processes are stationary, these definitions hold for any
interval. For the properties of the expansion see [11].
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fR(s-t) \j;j(t)dt = xjwj(s), 0 < s <1,j=1,2,...

S

O

1

Xj =\/px(t)wj(t)dt
o

(4.2.9)

n, =fn(t)¢j<t)dt
0]
=fyi(t)q;j(t)dt, i=0,1,...K.

0]

We then have as the first k observations

Xx =n, +y ., j=1,2,...k
; j le: J=l, e, )

and it follows from & property of the expansion that

E(nn ) =0, 1#J
Jg i

>\-j1 i=3

Since the ny are uncorrelated gaussian random variables, they are
independent. Hence, under the i-th hypothesis, the density function

of the first k observations x = (xl...xk) is simply the product of

k univariate gaussian density functions

fi(§)=fi(xl...xk)
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Define the functions
Tﬂ ylkl wkl(t)
2J , 1=0,1,...K; 0<t <1 (k.2.11)
kl=l
and the inner products
1 k
Yik, ¥k,
(v300%) =k/ﬁvik(t) x(t)at = 3;1 . i=0,...K (L.2.12)
e 1
o kl=l
1 k y2
ik,
(viyovy) =b/\ vik(t) yi(t)at = j{: . (h.2.13)
o kl'—'l

Now, it is more convenient to take the test functions as the ratio

’ j=0, ...K. (L.2.14)

The decision function remains the same. Cancelling common factors in

(14) and using the above definitions and (10) yields

== -—‘j- - l - + .
7y = L exp - 2 el nne )

2 vok,x>-<vok,yo>}.

Since the logarithm is & monotonic function we can just as well use

1nTj(§) in the test.

(Vok’yo)‘(vjk’yj)
2

1ln Tj(ﬁ) = ln(pj/po) + (vjk'vok’x) +
(k.2.15)

We shall assume



ylk
}: © , 1=0,...K. - (k.2.16)

Then, it is known ([32]) that:

i) the series in (12) converges with probability one

0
Yik, ¥k
lim (Ve ,x) = (vi,x) =§z ——zi——— < o, i =0,...K.
K00 — k,

17 (Lk.2.17)

ii) vik(t) converges to an Lp function v (t) which satisfies the
i
integral equation

1

JPR(t-s)vi(s)ds =y.(t), 0<t<1l,1i=0,...K. (k.2.18)

O

Since we are assuming that the autocorrelation function is strictly
positive definite, the solution to (18) is unique.

Define the random wvariables

W= fL x(t)vi(t)dt, i=0,...K. (4.2.19)

0]

and the quantity

1
1

ugy = (vi,y1) =L/qvi(t) yvi(t)dt. (Lk.2.20)

o}

The (gaussian) random variable wi is the output of the filter

luij can be thought of as the signal correlation to noise ratio. The
white noise case gives: R(t)=Nd(t), ujy = f yl(t)yJ t)dat/N,, and U=
signal energy/noise power density (per cycle)
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matched to the signal y;(t).
The logarithm of the test function is now a function of the

random variables (Wj‘wo)° Taking the limit as k + « in (15) yields:

-u.

In(T,(w;-u.)) = n(p,/p ) +(w, - )+ uo_og_a (4.2.21)

The error in the estimate of the log of the test function is simply

ln(Tnj(wj-wo)) - ln(Tj(wj—wo))

In(p /p ) - 1n(p /p )
jn on J o

n(p, fp,) - (B /o) - (b.2.22)

To form the estimate of Py, consider the output of the r-th matched
filter during eany time interval [ <t < (2+1). Assuming the i-th
hypothesis to be active during this interval, the received waveform
is x(t) = n(t)+y;(t), and w,. is a gaussiasn random varisble with mean
value uri and variance equal to W Averaging over all possible

hypotheses, the density function of the observation V.. is

(v ) = Z p; &lwp-u sV ) (kh.2.23)

rr
i=0

The only difference between the situation here and in section 2.6 is

that the correlation between the random variable (wp.-uyi) in different

intervals is not given directly in terms of R(t). We do, however, have:
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m+l g+31

E.{Ewril-uri)(wriiuri):} =J[\JFE(n(tl)n(ta))Vr(tl)Vr(tg)dtldtz
m £
101
= \/p\/ﬁR(m'l+t2‘tl)Vr(t1)Vr(te)dtldta (4.2.24)
o O

If we assume that R(t) satisfies condition B ((2.2.23)), let T=m-f,

and denote (24) by u  p_, then,
rr T

2 3 2
- Z le,| < z—‘Bz[fIVr(t)ldtJ
(o]

<
T
(L.2.25)
2
g 2
S u ngr )
Y

1
where b, is & bound on the L, norm of v, (t). Since g |ve(t)lat <
1 1/2
fo Vi(t)dt , we can set b equal to the Lz norm of v.(t). From
the definition of vr(t) and the previous assumptions, this norm is

finite.

Using the output of the r-th matched filter, we take as the estimate

of pj

n

A 1 .L

bm = L) g,
=1

L.2.26
S (h.2.26)
1 .
= = Z th z g(wrl-uri,\/urr), j=1,...K

i=1 I=1

wriis the output of the r-th matched filter during the f-th interval.
As in section 2.6, these estimates are unbiased. In analogy to the

previous case of time samples, assuming the autocorrelation function
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satisfies condition B eand that the signals satisfy an M-dependency,
from Corollary 2.6.1 and (25), the variance expression is dominated

by

VB < & el (1w o5 o+ 2(00))

n 2x u rr
T Uy

~2 .
= Vi o0 = 1,...X. (k.2.27)

To calculate the mean-square error in the estimate of the test
function (22), we proceed as follows. Since Sjn converges to p’j in

mean-square, it converges in probability:

A ~J
ST F

Consequently, with probability greater than 1-7? /e?,
jn

A
. -D.
4 - 8 - s Wialh R Sy VS
1n(By, /p;) = 1n(1+(Dy,-p;) /py) S 2 0(<3)
J

Letting A equal the set of sample points which satisfy [pdP(w) > 1-75;/e§,

it follows that

JF lne(pjn(w)/pj)dP(w) <75 o+ 0(e2) (4.2.28)
A

<nls

Upon applying the Minkowski inequality to the expected& value of the

square of (22), it follows that, except for a set of experiments of

probability less than ;jn/€§ or ;Oﬁ/ei (whichever is greater), the
!

mean-square error in the j-th test function is dominated by
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2 2

A 2 P;*p 2
En{w(lnTnJ-lnTj)}S (7Jn+ J "o o(es)) , J=1,...K.

2 2
pJ po

(4.2.29)
K] ) ~ ~ A
We have defined 7in = (7jn/pj+7on/po) and as before, we set Tno(wo-wo)=0
. - (3 * — 3
which gives y_ =0. Letting Yy = mgx 7in/€y0 1P analogy to (1.2.37),
for this (equivalent) procedure we obtain: except in a set of experi-
¥*

ments of probability less than 7n2, the difference in the probabilities

of error is bounded by

: 2 p3+p2
O < PepFe < z {;2—{73,1 ot =2 O(e,)+
j=0 ~“Jk Py Po
Pi+P§ 2
o(e.) + 8, (e.k) . (k.2.30)
pi P k Jk d
(0]

From our earlier assumptions, ;ji = 0(1/n). Hence, P, converges to
PE at the same rate, except for a set of possible experiments of prob-
N *
ability less than y 2.
n
To investigate the manner in which the signals affect the bounds,
we consider the case of binary communication, K=1. The difference in

the probabilities of error is then given by Theorem 1.2.2,

2 72
2n +8(e€) , (4.2.31)

O<P -P <
—"en e —

where 75 is defined below (29) with j=1, po*+py=1, and &(e) is defined

as 6(6)=Pr{:llnTl(wl-wo)| < e:} .
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Suppose we only use the output of the j=0O matched filter to estimate

Po- The bound on the veriance of the estimate is

2 2 2
~ 0 Bo b
en uoo uoo l"p*
where 1
0 = .
ca(0) z lhojl
3=0

The hij are the elements of the inverse of the Gramian matrix G (see

(2.6.1)). For this example, et is

2
1 -exp -(uoo-uol) /2uOo

2
-exp -(uoo-uol) /Euoo 1
-1 ,

JE;E;: (l-exP{;(uoo-u01)2/uoo )

and cg(0) becomes

1 (1 + exp {:(uoo-uol)g/z uoo:})
Jhnuoo (1 - exp {;ﬂuoo-uol)z/uoo ‘;})

cg(0)

The variance of the estimate is written

2 2
~o 2 1 ( g2 Babg s 2u1) (l + exp{—(uoo-uol) /Quoo‘%
Y, = = I -
on n 8xfu_ % 00 1-
T o0 Ox 1 - exp{'(uoo'uOI)z/uOO }
(k.2.33)

For purposes of illustration, let us assume that the autocorrelation
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of the gaussian noise is approximately a delta function, R(t)=N06(t).

Then, vo(t) is approximately yo(t)/No, and we have

1
2 2 2
~ /
bo < U/\ vO (t)dt OO/ o oo’c 5
0
and,
l + exp{;(u 2 /2 u :}
2 2 1 Bso 0o Y01 00
~ £ + 2M-1)
Ton n 8x%u 2(1-0* ° 1 - expy-(u__-u_)*/a })
00 00 1 Yoo

Roughly spesking, the variance of the estimate is inversely propor-
tional to the square of the signal-to-noise ratio. Consequently, in
combining estimates of p, from the two matched filters we would weigh
more heavily the filter corresponding to the larger signal energy.

For testing (K+1) hypotheses, there is a simplification when the
signals are orthogonal. The signals yi(t) are said to be orthogonal

if
ugy = f (t)yi(t)dt -ff (t)R(t- s)v (s)dt ds = 0, i#j

For this situation, the density function of the output of the r-th

matched filter (equation (23)) reduces to

£(vp) = Pr glupmuggs Vo )+ (1B )ew,s Va, )

rr

Hence, the output of this filter is used to estimate only p, and

operationally, the procedure for estimating the a priori probabilities
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reduces to that given in the introductory example of section 1.1.

4.3 TRANSMISSION OF KNOWN SIGNALS THROUGH AN UNKNOWN RANDOM MULTIPLI -
CATIVE CHANNEL

We now discuss the problem of detecting one of K+1 nonzero known
signals which are passed through a random multiplicative channel. In

any interval, the received waveform is
x(t) =N(t)+Zlyi(t); L <t < (4+1), i=0,...K , (4.3.1)

where the a priori probability of transmitting yi(t) is p;j. The
signal is amplitude modulated by a random variasble Zjy, which may de-
pend on the previous Z's, but which is independent of the gaussian
noise. In this problem, we take the a priori probabilities, j I
i=0,1,...K, as known, and the a priori distribution of Z, a(z), as
unknown. We will mainly be concerned with learning in the nonsuper-
vised mode as the problem of supervised learning (with an arbitrary
channel) has already been discussed in 4.1. We will, however, point
out when the results in 4.1 can be improved upon for the particular
case of a multiplicative channel.

At the end of this section, we shall briefly mention the problem

where the received waveform is given by
x(t)=N(t)+Z(t)yi(t),' 2 < t<(4+1), i=0,1,...K. (4.3.2)

Here, the signals are amplitude modulated by the (unknown) random

process Z(t).
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We start with the problem given by (1) and again derive limiting
forms via the Karhunen-Loeve expansion. Using the notation and defini-
tions of the previous section, from (4.2.9), the observations are the
Xkl,kl=l,...k. Under hypothesis Hj’ the density function for the first

k observations in the f-th interval is

S 1 . (%, -24 Yk, )°
fj(_}g) = exp« - E z da(zl) .
S (20)E/2(0y .. a0) Y2 it Moy

(4.3.3)

The density function of the observations averaged over all hypotheses

is simply
K

() = ) pyfs(n). (h.3.4)
3=0

For the (K+1) test functions we take

T.(x) = p‘j—fj(i_) , j =0,1...K. (4.3.5)
p, £ (x)

Cancel common terms in (5) and use the definitions in (4.2.11)-(4.2.13)

to obtain
+o

f l:exp - gl{—QZI(vjk,tzi(vjk,ij:l da(zl)

P,
T.(x) = L =

I= b, —
j Eaxp - %‘{:-221(\’01{:3()4-2?(\701{,3’0}] doc(zt)

(4.3.6)
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Yok
Since (v, k,y ) = JE1 > 0, j=0,1,...K, we can complete the square
J kl Kkl

in Zg. Define the random variasbles

(v31,%)
ka = __—_Jk’ k) J = O,l,...K- ()4"5'7)
(ij;yj)
Then,
+ o
2
we 1
. =00
T'(z) = —J € >
J Po wdk +o
+ y
o Mok’ o Jf 1
e €xXp - E k’y ok ao ZZ)
-00
(4.3.8)
We make the same assumption as before,
oy
ik
Z I (4.2.16)
k_]_= kl
Define
(Vi ,x) (vi,x)
wy = lim w, = lin Jk’ = (4.3.9)
k- J k-0 (ij;YJ) u,JJ

In any interval, Z, is just a constant. Hence, (4.2.16) guarantees

2

that wj exists with probability ome. Then, taking the limit in (8)

vields (by the bounded convergence theorem):

oo 2
L1 2 - % (WJ_ZI) da(zl)
p, ., 2 33" f ©
lin T,(x) = ~4 T 2
k> po e guoowg oo _1‘. u (w -7 )2
) oo "o 4
f e aofz,)
- (4.3.10)
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with probability one. The vj's are again the (unique) solutions to
the integral equation (4.2.18) and, since R(t) is assumed to be strictly
positive definite, we have 54 > o0, j=0,...K.

For some of the cases we will discuss, it is more convenient to

use the logarithm of the test function. Defining

“+o
Lj(wj) = ~J2n/ujj‘\/W g(wj-zl;l/~Jujj)da(zt), j=0,...K,
- (4.3.11)

we have

211
5-

l <
ln(Tj(wj,Wo))=ln(Pj/Po) t3 (ujjw oo%o

+lnLj(wj)-lnLO(wo) . (k.3.12)

The test procedure is to pass the received waveform x(t),f <t <L +1,
through K+1 matched filters. The gain of the j-th filter is l/ujj’ and
the output (equation (9)) is wj. The K+1 W, are then used to evaluate
the test function in (10) or (12), with the signal corresponding to
the largest value being announced. This is the one-stage procedure to
minimize the probability of error when a(z) is known. To estimate the
test function in the nonsupervisory mode when a(z) is unknown, we first
obtain the density function of the Wye
Consider the output of the j-th matched filter in any interval.

Assuming hypothesis i is active, we have

1
W, = (vj,x) = _1 L/\v,(t)(n(t)+zy.(t)dt . (4.3.13)
J a2 W s J -
Jd Jdd 0

wj, given the value of z, is a gaussian random variable with mean value
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(Zuji)/ujj and standard deviation l/'dujj . The density function of

wJ given that hypothesis i is in effect is

+wo

N R I TR - VN o 05 B OO TH
433

-00

and averaging over all hypotheses we obtain

£ (w ) = 2 f Wi~z %, 1/J‘“) da(z), 3=0,...K

(4.3.15)

We have dropped the £ subscript since the sequence (Zl] is assumed to

be stationary.

4.3a OQrthogonal Signals

We first consider the case of orthogonal signals. With uji=0

for j#i, (15) reduces to

“+o
fj(Wj) = pj\/ﬂ g(wj-z; l/~fﬁjj)da(z)
+ (l-pj)g(wj; l/jJujj). (4.3.16)

In view of the definition of Lj(wj), we can write

U1 .
Ly(vy) =“i’;jL-1-l (£500y)-(1-py)eluys 1/ Vuy,)) (4.3.17)

Since ujj and pj ere known, the unknown part of ln(Tj) is ln(Lj(wJ)).

From (17), the problem of estimating Lj(wj) reduces to estimating fj(wj)
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and then subtracting off the known quantities.l Clearly, we can do
this under a nonsupervisory condition with either the Lo series or the

eigenfunction representation.

For the Lg series approach, we expand each of the fj(wj) in a series

as in section 2.4. Then, assuming the r-th sbsolute moment of the
random variable Z exists (r > 3), the sequence Z, is M-dependent, and

that R(t) satisfies condition B, we can apply Corollary 2.4.1 to obtain

En{(%n(w‘jn)-fj(wjn))ﬁ _o(1/al TRy (4.3.18)

where an represents the output of the j-th filter during the n-th in-
terval. This bound is then used to dominate the quantity Pen-Fe -
Since (18) implies convergence in probability, one could proceed %o

2N
dominate the expected value of 1ln Ljn(w' ) as in the previous section.

J
In this manner, one could make a (probability) statement about the
convergence of Pen to Pe in analogy to the case in sub-section 4.2b.
A block diagram of the procedure for estimating Lj(wj) is given
in Figure 2. As indicated, the output of each matched filter is fed
into g+l devices to evaluate the first g+l coefficients. The oq for

each of the Ly series represents an arbitrary constant. If we picked

them all equal, we would not need g+l coefficient generators for each

lThe structure here 1s identical to the problem of binary on-off com-
munication through a random channel. In both cases, we are testing
a composite hypothesis vs. a specified alternative. The distribution
of the composite hypothesis is estimated by estimating the overall
distribution and then subtracting the known quantities.
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filter; the observations W.

jn? J=0, 1...K, could be processed serially

by the same g+l devices. We can also eliminate storing the first g+l

Hermite functions by use of the recurrence formula

_aw
@j+l(w/0) = O'—- P

s(v/e) + 259, (w/o)

Since we have truncated the estimate of the series, there will be

an asymptotic error as given by (2.4.57). We have,

. P 2 L
;L;: En{‘(fj(wjn> - fjn(an)) } < ez \/_Be {(E 1) q(r/Z)-l
2

s 1
qr/2;}> )

oj). Recall that c; is Cramer's bound and

1/h

The constant cz is c1/(x
Oj is the arbitrary constant. Bg is the Lp norm of the function given
below (2.4.21). Both the signal-to-noise ratio ujy and o4 enter into
Be.

We now use the eigenfunction representation for the same problem

of orthogonal signals. From (16) and (2.5.11), fj(wj) can be expressed

as.

1 i
£00) = ) oyt agg ¢ (o0 Gayfry) (309
J d =0

where




180
Uss 05-1
2 _ Jd J-
i u.. o2+
J uJJ oJ 1
2 2
2 (uJJGJ-l)(ujjOj+l)
Ty T 2 2
u,.o,
Jd J
and
dji =/ @i(z/cj)da(z) .

The bji are the Fourier coefficients of s-(w)g(w;l/-dujj),

J

b,, = [ @i(w/oj)sj(w)g(;l/~Jujj)dw .

Jl

The constant o2 is chosen to be greater than l/ujj‘
J

The part of the test function which we want to estimate is lnLj(wj).

From the definition of Lj we have the expansion

[ee]

1=0
and can write for (12)
1n(T5(05,w0)) = 1n(py/og) + = (ay55 = ugg 13)
+ 1n(s5(w3)L (w3)) - 1n(so(wo)Lo(wo))

.) + 1n so(wo).

- 1n sj(wJ

The error in the estimate of (24) is

)-1n(s L )+n(s_L_)

; ﬁ
lﬂTj-lﬁTjn=ln(stj)-ln(s. . olon

Jd Jn

which we can also write as

(k.3.20)

(k.3.21)

(L.3.22)

(4.3.23)

(L.3.24)

(4.3.25)



A
s L -s L
InT -1nT, =1n (1 +-22°8 °C0O
J Jn

(L4.3.26)

In analogy to section 2.5, we take the estimate of sj<wj)Lj(wj) as
a(n)
() Eyn) = ) &, Ay 9y(us/rg) (4.3.27)
sj wj in Wj = 5 33in Py W3/ B.2T
i=0

where the estimates of the coefficients
n
iaA 1 1 .
d,, =—9§ = AW . . - -p:)b..
S p.{n Z 0 (W, /75) s(Wyp) - (1-py)by, }
J 1=1

differ from those in section 2.5 only by the (l'pj)bji term.

If the sequence of rendom variables {Z,} is M-dependent amd if R(t)

satisfies condition B, then, from Corollary 2.5.1, the sequence of esti-

A

mates sjL;,  converges in mean-square (uniformly in wj) to s.L,. The

Jn J7J
rate is lnzn/n with the bound given by (2.5.34). Since we have con-
vergence in probability, we could again make a probability statement
concerning the convergence of Pepn to Pg.

We remark that if the orthogonal signals yj(t) have equal energy
then Uss= cee=U o, and the fj(wj) are essentially the same.l In this

situation we need only use the output of one filter to estimate the

LThe fj(wj) would be identical if the signals were also equi-probable.
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coefficients.

4L.3b Bipolar Signals

Some interesting problems asrise when we are testing between two
hypotheses and the signals are bipolar.

The signals y,(t) and yi(t) are said to be bipolar (or antipodal)
if yo(t) = -yl(t). In this case, we need only one matched filter as
vo(t) = -vi(t). The density function of the observation (equation

(15)) is

£(w,) = py | &l -25 1/Nuy,)dalz)

0]

(4.3.28)
+ o1 [ elwg*z; 1/ Juoo)da(z)

since uoo=ull=-u01. With wo= -w1, the test function, as given by (lO)

becomes

m Je(w,-z; Yu_ )aalz) . )
T(w L . .3.29
P felw_+23 1INu_)aaf =)

Let

Lo(vg) = so(w) [ a(vwy-2z5 1/ Nugj)aolz) (4.3.30)
Li(w,) = so(wy) [ glw,z; 1/Nu )da(z) ,

where so(w,) is defined as in (20). A procedure equivalent to compar-

ing T(wo) to a threshold of one is to evaluate
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T =p, L - 3.
T(w,) = pa La(w ) - p L (v ) (k.3.31)
and compare it to a zero threshold.
We need to assume that da(z) # da(-z). If dafz) = da-z) then
il(wo) = Lo(wo) and there is no basis for a decision. Hence, if the
density function exists (da(z) = @'(z)dz), we assume that it is not

an even function.

Multiplying (28) by s (w,) results in the expansion
Soi)200) = ) 82 a(parn (1)) 0w /) (4.5.52)
while the test function can be written as
Tug) = ) 828, (paep (1)) 0w /) (4.3.53)
Vo) =/, 5,84 Pa-p (- ) Ps\W, 170 .5.53

The coefficients dj are defined in (21). We have used the property
that the Hermite functions are even or odd functions (depending on
whether the index j is even or odd) to obtain (32) and (33).

We observe from (32) that if p: % Py there is no problem in
estimating the product (éjdj) which is then used to estimate E(wo).
For bipolar signals, however, it is certainly reasonable to take

Po = P1 = % . Then, (32) and (33) become

2]

2J
o)) =) e e (/) (4.3.34)
J=
v N 2jt1
B =) €24 e (u/r) (4.3.35)
= o 25+1 2j+t1 o
J:
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Hence, we can only estimate the even coefficients, while the test func-
tion depends on the odd coefficients.
There is one set of circumstances where this difficulty can be

overcome.l Suppose the density function of z exists,
dafz) = a'(z)dz ,

and that @'(z) is Lp. Further, assume that the random variable z can
only take on positive values, a'(z) = O for z < O. Then, the even part

of a'(z) uniquely determines the odd part:

ol (z) = Hel2le) Ly (ofs) (4.3.36)
3=0
and
al = o' (z)-a' (-2) = Q'(z) for z >0

From (30) and (31), the test function can be written as

+oo

(w,) = s<wo)fg(wo_z; ) [av(z)-a,(_z):l .

2

-0

The procedure, then, would be to obtain estimates of the coefficients

Operating in the supervisory mode, there is no difficulty since we
can estimate all the coefficients, even and odd, by estimating the
marginal density fo(w,) or fi(-w,). The even coefficients of f,
and f; are equal and the odd coefficients differ by a minus sign.
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2]
dzj by estimating (& “dzj) in (34), end then dividing by &9, The

estimate of the test function would take the form

~

a(n) o
T (w ) = s(v) }: i {:}/pg(wo-z; 1/~Nug) waj(Z/ao)
3=0 o

0

-f g(wo-z; l/\/TJ.-O—O) sz(z/oo):} . : (4.3.38)

=00

The convergence of (38) to E(wo) is not given by the ln2n/n rate since
we are, in effect, estimating a'(z) and not f(x). As indicated above,
using the eigenfunction representation, we can "pick off" the dj's.
The Lo series can also be used to estimate @'(z). The estimation
procedure, however, is more complicated. This will be discussed in

section 4.4

L.3¢c Arbitrary Signals

The distinction between the supervisory and nonsupervisory modes

is more marked in the case of general signals. Define the constants

g. Uu..
S B
Ji u,j,j
(4.3.39)
u,, 0% -1
2 - 44 i -
Ji 2
.. 0.5 +1
Y39 %51
.0.2- . .02+
2 (uchJl l)(uJJoJl 1)
FIA u.2g?
JJ 41
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and the functions
2
l l w-u..
s‘_(wj) = — exp{i: > —;1~*ﬁ;:% (4.3.40)
Jl . . .
VE51 751 %31
where the indices i,J = 0,1...K. The (K+1) o4 are chosen so that
2
o5 > vy From (2.5.6), we have the expansion
0
k
g le)elogys /NG = ) 8 w/r) o (v/ey)
k=0
or,
u,. o =k
Vel g AL . 1 =Z .
Jd k=0
(L.3.41)
Defining the coefficients
+oo
a = z/o.)dol z 4.3 kho
N XA O (4.3.42)

=00
the density function of the output of the j-th matched filter (equation

(15)) becomes
K

1 k

(w.) = , T o a, L) L.z.h

GO =) w T ) ) (4.3.45)
i=0 Ji 3" k=0

It is the djk'whidlare needed to estimate the unknown part of the test

function, lan(w_). Repeating the definition of Lj(w.),
J J

+oo
Lj(wj) =~J2n/ujj JF g(wj-z;l/~fE;;)da(z) R (4.3.11)
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we use (42) to obtain

Ver/u, - Kk
—A ) gt e (4.3.4k)

L.(w
J J 7 Jdd
k=0

-

s35(v3)
The difficulty in estimating djk is that the unknowns in the overall
density function no longer appear as the coefficients of an orthogonal
expansion. Of course, in the supervisory mode, there is no need to
consider the overall density function fj(wj). By working with the in-
dividual densities in (L43), we have the usual orthogonal expansion and

can update the estimates of d,.

3k at each stage. For the nonsupervisory

problem, we can use a procedure analogous to that given in section 2.6

to obtain approximate estimates for a finite number of the djk' By

defining
K
« 4.3.4
vle) =) O B, (e3)
i:
fj(wj) can be expressed as
fj(wj) = Z djk wjk(wj) . (4.3.46)
k=0

It can be shown that the functions ij(wj), k=0,1,...J-1, are linearly
independent. Then, we can construct (as in section 2.6) a set of func-

tions wjt(wj) which satisfy

0, mfk (4.3.47)

1, m=

+o
1
\!ﬁ ij(w)wjm(w)dw
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where k,m=0,1,...J-1. As an estimate of djk’ k=0,1,...J-1, we can take

n

A 1 1
= W . |'.Iﬁ
djkn n }: ij( jl) (4 3 4o)

1=1
These estimates are biased

oo

- A1
B(dypn) - dyx = zz dsq ~/ﬁwjk(W) Vyg(w)av . (4.3.49)

i=J o0

The variance calculations are unwieldy and we will not discuss them.

The difficulties encountered in the case of arbitrary signals carry

over when the received waveform is
x(t) = N(t) +2(t)y;(t); £ <t <(4+1), i =0,...K. (4.3.2)

We define the time samples z(tkl)yi(tkl) 8s 2y Viy and let u, be the
vector of time samples. The density function of the k samples, given

that the i-th hypothesis is active, is

s =) a [ el sy o).

Janeedy

du;, ...du,
(ui, /5 o) —k (k.3.50)
©s (Ui, /s . 3.
Jk' 1k lk k yil---yik

For simplicity, we have assumed that the density function of a(g) exists

and is Lp, and have defined the coefficients as
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djl.. . "'f"'fq)jl(zl/cl)-.- q)jk(zk/Uk)a'(Zl,.-.Zk)le...de .
(4.3.51)

The test procedure involves evaluating each of the f;(x) and then com-
paring them as in section 1.2.

If the noise samples in each interval are independent, A is diagonal
and the problem is a direct extension of the one above. For the super-
visory mode, each Si(i)fi(i) can be expressed in an orthogonal series.
In the nonsupervisory mode, (50) is summed over i and one can obtain
the k-variate analog of (L46).

When A is not diagonal, fi(z) can not be expressed in an orthogonal
series with the djl---jk defined as in (51). Be redefining the coef-
ficients so as to depend on the index i (let 01...0x depend on i), one
could express each fi(i) in the same orthogonal series. Then, in the
supervisory mode, the coefficients could be estimated as in section

3.53.c. For the nonsupervisory mode, this representation would only

be useful for the case of bipolar signals.

L.4 UNBOUNDED LOSS FUNCTIONS FOR THE CASE OF BIPOLAR SIGNALS

For the case of equi-probable bipolar signals, we had to assume
that the random variasble Z could only take on positive values in order
to consistently estimate the test function in the nonsupervisory mode.
Under the same assumption on Z, we now give another formulation which

is 1llustrative of a class of problems.
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Equation (4.3.28) can be written as

oo

) . (b.h.1)
00

The output of the matched filter is WO=NOtZ, depending on whether yo(t)

or yi{t) = -yo(t) was transmitted. N, is the (derived) gaussian noise

sample with variance equal to l/uoo. Deciding between y, or -y, is

equivalent to deciding whether the prefixing on the (non-negative) ran-

dom variable Z is + or -. Rewriting (1) as
oo
£(w,) =b/wg(wo-z;l/~Juoo)dae(z) s (4.4.2)

~co
we can think of Z as a random variable with the symmetric distribution
a.(z). Z will be positive (negative) only if yo(-yo) is transmitted.
Hence, the decision problem is equivalent to deciding whether Z is
positive or negative.

If Z is close to zero, it is more difficult to distinguish between
the two hypotheses. The penalty of an incorrect decision should, ac-
cordingly, be small. On the otherhand, if Z is large and we make an
incorrect decision, the loss should be high. As one possible loss
function, we take the loss equal to the magnitude of Z for an incorrect
decision and equal to zero 1f we decide correctly.

Using the notation of sub-section 1.2d (with z and LS in place

of A and x), the loss function L(t(wgp),z) is:
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L(0,z) = 0 if z >0
= -z if 2z <0
(4.4.3)
{1,z) = z if z >0
= 0 if 2 <0
We announce yo(t) if t(w,) = O and -yo(t) if t(wo)=l.
Defining
b(z) = L(0,z) - L(1,z) = -z, (b.b.4)
from (1.2.49), the test function is
o
TQ%(WO) = \jﬂb(z)g(wo—z;l/'Jhoo)dOé(z)
The procedure which minimizes the average risk is to set
t(wo) =1 if TO‘e(wo) >0
=0 otherwise.
Substituting for b(z) yields:
oo
Tae(wo) = -\/ﬁzg(wo-z;l/~Juoo)dae(z)
(k.4.5)

- (Wpt(wg) + == 1 (w))
o0

Hence, the test function does not depend explicitly on Qe(z). However,
we now require estimates of the derivative of f(wo). To estimate the
derivative, the techniques given in Chapter 2 are applicable. By dif-

ferentiating the estimates of f(w,), we can obtain consistent estimates
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1
of £'(w,). As would be expected, convergence of these estimates takes

place at a slower rate than the estimates of the density function.
Then, assuming fzzdaé(z)< © , Corollary 1.2.4 can be used to bound
the difference in risks.

If b(z) is a k-th order polynomial in z, the test function will
depend on f(wo) and its first k derivatives.2 Even when the test func-
tion can not be written as a polynomial, the problem of finding con-
sistent estimates of Tae(wo) is, in principal, easier than the situa-
tion encountered in the last section for the case of arbitrary signals—
the point being that here, the density function under either hypothesis
(Z >0 or Z <0) is the same and is given by (2). Consequently, we

can estimate ae(z) and form an estimate of the test function by taking
o

r/I‘\Oden(wo) ﬁ( (v_-2; 1/J‘_aa

(4.4.6)

en(

%]

We briefly discuss how to estimate the distribution or, for sim-
plicity, the density aé(z). We assume aé(z) is Lg. Using the eigen-
function representation, we first form the estimate of Ejdj as in
section 2.5, and then divide by the known Ej. The estimate of O%(z)

is taken as

1

For the method of 2.3, we have verified this only with the gaussian
kernel. To use the eigenfunction representation, we estimate the
product s{w,)f'(wy).

2For a discussion of this point, and other densities (besides the gaus-

sian) which have this property, see [37].
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a(n)
A A
B(z) = ) A 0(a/o) .
J

Using the Ly series for f(x), we define the estimate implicity by

-+00
gn(wo) =k/mg(wo-z;l/uoo)aén(z)dz .
a(n) (4.4.7)
= an @j(wo/ol)
3=0

Since the Hermite functions, aside from a constant, are their own Fourier

A
transforms, letting (v) be the transform of f_(x), we obtain
) n n 4

q(n)
an(v) = 0, E: (-l)J/2 gjn ¢j(01V)- (4.4.8)
3=0

A
Letting Maen(v) be the transform of o , we have

2 /oy
My n(v) = e+V /2 00 an(v) . (4.4.9)

To form the estimate of Q%(z), take the inverse finite Fourier trans-

form of (9),

A 12(n) +v2/2u ~ivz
a (z) = \/P e ©0 Mfgv) av ,

with Mg(v) given by (8).
n

Both of these representations for aé(z) lead to consistent estimates

and, under appropriate conditions on b(z), the sequence of test functions

defined in (6) can be shown to be consistent.



CHAPTER 5

SUMMARY

We have studied a particular empirical procedure and applied it to
some problems in communication theory. The procedure utilizes all past
Observations to form an estimate of a test function which is then eval-
uated using only the present observation. This procedure is neither
optimum nor asymptotically optimum when the sequence of observations is
assumed to be dependent. Whether or not the sequence of observations
is dependent, we have shown that if the sequence of test functions con-
verges in mean-square to the one-stage test function, the difference in
the risks (for the case of a bounded loss function) is dominated by a
quantity proportional to the mean-square error in the estimate of the
test function. These calculations (section 1.2), although straightfor-
ward, appear to be new.

In estimating the density function f(x) from the sequence of de-
pendent observations, we are able to dominate the mean-square error and
hence, specify the rate of convergence of the estimate. The key rela-
tionship is the Mehler formula (2.2.12), or more generally, the Barrett-
Lampard expansion (2.7.1). It appears that this particular application
of the expansion has not been used before.

We have presented three methods of estimating the density f(x).
Varying amounts of information are required to apply and specify a rate

of convergence for each of the techniques. A summary of assumptions
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needed and rates of convergence are given in section 2.7 and at the: end
of 2.5. Of the three methods we have presented, the most interesting
is the eigenfunction representation. To the best of our knowledge, this
approach of estimating a density function obtained from a convolution
and the particular solution of the eigenfunction problem in section 2.5
have not appeared in the literature.

The communication problems we have considered are those in which
the ucknowns enter linearly into the overall density function. In section
4.2, the unknowns consist of a finite set of parameters. In the other
problems, an arbitrary distribution is taken as unknown and expressed
in terms of a countable set of linear unknown parameters and known func-
tions by using either of the two series methods.

The series methods we have studied may also be useful for other
purposes. We have mentioned two; estimating a k-variate density func-
tion with the Lo series (2.7 and 3.3b) and using the eigenfunction rep-
resentation for the detection of random signals in gaussian noise with
the number of terms to be used in the test function determined by a

sequential procedure (4.1b).



THE HERMITE POLYNOMIALS

APPENDIX A

In this appendix, we review the definitions and properties of the

Hermite polynomials and develop the relationships which we will need.

Common practice has been to use the notation He,(x) for the poly-

nomials associated with the weight function e~
polynomials assoclated with the weight e~

we will adopt. The polynomials

Hen(x)

Hn(X) =

A.1 THE POLYNOMIALS Hen(x)

x2

2 2y (x/V7)

2n/2 HenQJEnx).

From Cramér, [10], page 133, we define

Hep(x) = (-1)

ax

The first five polynomials are:

Heo(x)

He:(x)

]

H62<X)

The orthogonality

relation is

Heg(x)

Hey(x)

196

x2/2

n ex2/2 (d )n e-x2/2

X -3x

X -6x+ 3

,amiHﬂx)fm~ﬂm
This is the notation which

are related by (Erdelyi, [12] p. 268),

(A.1)

(A.2)

(4.3)
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+oo 2
1 JF -
pp— 2  He (x) He (x)dx = n! =
e e e (x)dx n. , m=n
n m
v en b (A.5)
= 0 , m#n
One generating function is
(e ]
2 v
-tZ /2 +
e &%/ o }: r Hev(x) (A.6)
5 vl

and another particularly useful expansion is given by

22, 22 e
1 P X tpy -2 pxy o’
s o] el ) 2 e () Ee(y), (8.7)
1-p* v
0
with (A.7) holding for |p| < 1.
We define (see Table of Symbols)
(x-m)®
X-m 1 = —
glx-m;o) = g(557) = e 262 - (4.8)
Ver o
We have from (A.3)
n n
d -1 - -
A a(xemo) = SRl g(xomy e (xmy (A.9)
dx g ag n o
and from (A.5)
+o
[ men(55E) we (5 (5B gy - w4 -
vt (A.10)
= 0 , 1! #n

A.2 THE POLYNOMIALS Hn(x)

From Erdelyi, [12], section 10.13, define:




Hn(x) is also given by
(n/2]

Hn(x) = n'

_l)m(ex)n—Qm

(
m' (n-2m)*

m=0

where [n/2] denotes the largest integer

ing five polynomials are:

\

(A.11)

’ (A.12)

n/2 or (n-1)/2. The correspond-

Ho(x) = 1 Ha(x) = 8 x° - 12 x
Hy(x) = 2x He(x) = 16 x* - 48~ + 12 .
Ho(x) = bLx® -2 (A.13)
The orthogonality relation is
oo
%= n
jF Hh(x) Hm(x) e dx = 2 n'Vn 8 (A.1k)

and the corresponding generating functio

* n
tZ42tx LA
S = n' n X

n=0

1 WooP+y20%-2 oxyr  ©
+ e” l_p2
N 1-p2

(A.16) is called Mehler's formula.

For the weight function

&(x/o) = —if— e oF

ns for these polynomials are:

) (A.15)

= z (—Q?L)n B (x) H(y), [e]l <1 (4.16)
r, n.
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we have from (A.11)
a2 (-n)" xy .2
(=) g (x/o) = =4 H(X) g (x/0) (A.17)
ax g g
and from (A.1k)
+oo
f X w(xy o/ "nt A.18
Hn(;) m(;) e dx = p2n'VNrd . (A.18)
In terms of the g(x/d) notation, the orthogonality relation becomes
+o
Jf 2 Enn'
H (x/0)H (x/0)g"(x/0)ax = -~ 3 (A.19)
. " Jiz? ™

The sequence of functions given by g(x/0)H.(x o) is known to be a
J

complete orthogonal system [38].

A.3 THE EXPANSION OF THE BIVARIATE GAUSSIAN DENSITY FUNCTION AND A LEMMA

An expansion for the bivariate gaussian density function is easily

L - (x2+y2)

obtained by multiplying (A.7) through by —=—e o) * and then
2n0,02
substituting x = 2281 , y = ¥=82 . In terms of our g(x) notation, the
51 Oz )
result is
2 .
Geemy)™ o Gemy)(yomp) | (yemg)®
exp - =
2n01°a(l-pa)l/2 2 1-p2
(o]
n
- g(Em) gife) ) 2T me (KW e (K)ol <1.  (a.20)
0, Oz n' n g n- oz

n=0

This result can also be derived from the bivariate gaussian characteristic
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function by expanding the cross-product term in & power series. The double
integrel in the inversion formula then becomes two single integrals.l

We denote the bivariate guasssian density function by
ga(x-my,y-mp;01,02,0). If the standard deviation of both varisbles is the
same, we designate the density by go(x-m;,y-mgz;0,p).

When integrating the biveriate density as given by (A.20), we will
want to interchange the double integration and summation. This is easily
Justified by

Lemma A.1: With |p| < 1, it follows that

1 Y2
M/Yh/ﬁ g2(x1,%2,;01,02,p)dx1dx2 =

-00 =00

il n yi ya
= zz) ET k/ﬁ g(x1/01)Hep(x1/01)dxy k/ 8(X2/02)Hen(xe/02)dxe (A.21)
. J

n=0 -

Proof: Let

G(Xl,xz) =

) el

n=0

lHen(Xl/pl)llHen(XZ/UZ)ig(xl/cl)g(x2/°2)
(A.22)

Then by the Lebesgue monotone convergence theorem,

Y1 Ya

Jf\/p G(x1,x2)dx1dx2 =
-0 ~®

lStratonovich, R. L., Topics in Theory of Random Noise, Gordon and Breach,
N. Y., 1963. Translated from the Russian by R. A. Silverman pp. L1-42.
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® n AT o
==§Z 1{%—- u/\lHen(xl/Ul)1g(X1/01)dxl \/ylﬁen(xg/OZ)|g(xa/02)dX2 (A.23)
=0 ’ =~ -0

Using (A.10) and the Schwarz inequality, we obtain
Y1 1 1 1
lee (x1/01) lg(x1/01)dx; < fHei(xl/cl)g(xl/ol)dxl /yg(xl/ol)dxl
=00 -00

=00

(A.24)

< ~n'
Since |p| < 1, (A.23) is dominated by

Ji Yo ®
G(x1,x2)dx,dx2 < z lol

-0 «-00 n=0

n 1
1-|p]

(A.25)

N n
Now define gy(x:,%2) = ZO E- e(x1/0) &(xz/02)He (x1/01) He (x2/02).
n= n.

Clearly, gy(x1,x}—>g(x1,%2;0,0) pointwise. For all N we have

gn(x1,%2) < G(x1,x2) which we just showed was integrable. (A.21) then

follows from the Lebesgue dominated convergence theorem.

A.4 MISCELLANEOUS RELATIONSHIPS

From Erdelyi, [12], p. 193, we have the fact that Hp(x) is either

an even or odd function, depending on the index being even or odd,
n
H(x) = (-1)" H(-x) . (A.26)
From the same page we have:
Hn_+l(x) - 2an(x) + 2n Hn_l(x) =0 (A.27)

S H(x) = B (x) =2 B (x) . (.28)




202

A uniform bound (in x) for the Hermite functions was given by Cramer.

From Erdelyi, [12], p. 208, or Sansone, [38], p. 324, Cramer's bound is
-x2/2 <o
e IHn(x)] < cyN2mn\ o, (A.29)

where the constant c; = 1.086435. Using (A.1) a bound in terms of the

He (x) polynomials is

2/

2/

e 2 IHen(x)l _<_e-X A|Hen(x)| < clm (A.30)

1/4 1
The bound has been improved with c¢; replaced by 2 /\ﬂ; .

1
Reuter, G. E. H., "On the Boundedness of the Hermite Orthogonal System,"”
Journal of the London Math. Society, vol. 24, April 1949, pp. 159-160.




APPENDIX B

EVALUATION OF SOME INTEGRALS

In this appendix we calculate a number of integrals 4involving the
Hermite polynomials. For our purposes, the most useful result is given
in equation (B.10). Equations (B.15) and B.17) are of interest and have
been included for the sake of completeness.

We shall evaluate the integrals starting from an integral appearing

in Tables of Integral Transforms [13]. By way of verification, we also

indicate different (and sometimes more direct) methods of obtaining the

results.

From Erdelyi, et. al.,[13], page 290, number 17:

He | — &
n (1-a2)1/2

> 1 2 1/2 2 n/2
u/\ exp [& - (x-y) | Hep(ax)dx = (2n)"' (1-a )

-0

(B.1)

It is easy to verify this integral for n=0,1. Then, integrate (B.l) by

parts and use the relations

d
= Hen(ax) = naHen_l(ax)

ox He (ax) = He ., ox) + n He  ;(ox)

1€

(which are derived from (A.27) and (A.28)) to express (B.l) in terms of

integrals involving polynomials of order n-1 and n-2. (B.l) is then

203
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verified by induction. The simple substitution x=%/o, y=y/o gives

4+ n

7 . o : y
f g(—ox) Hen(gm—)di = (1-a2) He [;?]%72] , (B.2)

-00

where again g(x_;x) denotes the gaussian density with mean ¥ and standard
deviation 0. Using the relationship between the two types of Hermite

polynomials, (A.l), the integral is expressed in terms of Hn'

oo

f ) 2n/2
f g( )H (?G)dx = (1-a) [@0(1-02)1/2:' . (B.3)

-00

With x=X-m, this becomes

oo

X-y-n Q\ x-m - _ n/2
[emzm y [ae] oy [ ]

=00

We now want to evaluate the following integral.

oo

1= [ () om) (R (3.5)

-0

Use the relation

(ER) g(X22) -

$=4
g g(X2 (B.6)

where
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and I; becomes

+m

\[T_l;i,) J H (X'ml) g(*= -ab” )ax . (B.7)
01%+02° 01

Mske the following identifications

y = aba-ml
o =D
Vb
a = —
01
and substitute into (B.7).
R O‘<X-ml g(X¥M)ay | (.8)
o) 2+0’2 b

=00

This integral is given by (B.k)

I, = g(2f2 ) (l-of’)n/2 H oy . (B.9)

N 018+052 e c(l-a2)1/2

Substitute for y,o,a, and then for a and b. The result is

I

f H ( 'ml) a( —ml) g(E me)dx

n
2
Mo~-my d Ul(me-ml)
&( r .
V012+02 91 +°2 J012+022~J012'022

(B.10)

This integral exhibits a type of reproducing property which we will
find useful in this study. The property which we refer to is the fact
that the (gaussian) average of a Hermite polynomial of order n and its

associated gaussian weight gives a Hermite polynomial of the same order
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and a gaussian weight, with the resulting two functions having different
arguments.
For the case where ¢,=0z, by using (A.12), (B.10) reduces to

n
I, = g(Z&fi) (Me-mi) | (B.11)

\/?O'l g1

As an alternate derivation, equations (B.10) and (B.1l) can be obtained

by using a form of the Weirstrass transform (Bilodeau [4]). Briefly, this

method involves defining the transform of V¥(y) by

oo =)

<) = = e-(x—Y)
) = = f W(¥)ay (5.12)

=00

and noting that (under suitable conditions on ¥(y))

Jeo 2
L[ ame ey (.13)

=00

dn

— 7(x)
dx

x=0

The evaluation of (B.12) is carried out by completing the squares of the
product of appropriate guassian weights.

A generalization of (B.10) is the evaluation of

“+oo

| omEm) gese) gme (3.14)

-00
We use (B.€) to manipulate (B.1l4) into a form so as to use (B.10). The

result of this straightforward procedure is:

+oo

[ty o502 o(X0e) e

=00
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n
2 2 2 2 2 2 5
- g(Bezma ) <02 (017-05 )*og (037 -02")
N v.'022 +032 0'12( 022+032)

H_ 05 (mz-my) + 02°(mg-m;) 1 . (B.15)

J022+032'J022(012-032)+c§ (0,5-02%)

The polynomials Hen(x) also exhibit the reproducing property analogous to

(B.10). For the integral given below, set o, =2 oz and use (A.1l):

+oo
f He (Y22) g(¥722) g(y;za)dy
-co n +o0
-2 2 ) (i) (i) (5.16)
01

This integral is given by (B.15). Upon substituting back for o; and He

we obtain the desired result:

f He (y'xz) g(l'xz) g(z'xs)dy

n
§ Xa-X2 Xa=-X2
(—*3-——) He | === . (B.17)
{022‘*'03 } 02 +032 ‘\]g22+;‘532

Here, the argument of the resulting gaussian weight and Hermite polynomial ”
are the same (cf. (B.10)).

This result can also easily be obtained from the integral

+oo
| srze) gayey - o xamiz® -x2>
5 :
el o= 3 022+032

and the following relationships:
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n n
d (—XaX2 _ (-1) X3-X2 )He

g ( )
n \/—
s 022032 (022+032)§ \’02 24037 0p®+03

d J-Xg3 1 - -X
—x g(fR) = 2 g(LX3) He (£9)
dx O3 n 03 n os

He (-y) = " He (
en(-y) = (-1)" He (y)
Another integral which we will need is

Io =L/1/ﬂg(xl‘Yl§01)g(x2‘Y2§Gl) g2(y1-21,¥2-22302,0)dy1dys (3.18)

where go(y1-21,y2-22;0) is the bivariate gaussian density with standard

deviation oz and correlation coefficient p. This integral can be evaluated

by using (B.17) and the expansion (A.20). We note, however, that (B.18)
represents the density function of the sum of two indepenaent gaussian
vectors. The resulting probability density function, which of course is

gaussian, has a covariance matrix equal to

2
o O oz" pos” 0124052 o2
+
2 2
0 01 oo ® oz = Lpos® 015 +02"
Hence, defining
2 = 2
Yy = 03 toz
(B.19)
022
P = p
052+0 12
(B.18) is given by
Iz = ga(x1-21,%x2-2257, D) . (B.20)



APPENDIX C

THE GAUSSIAN KERNEL

By specializing the kernel in section 2.3 to K(y)=g(y;l), we are
able Lo perform some of the required integrations. This permits, for
example, an exact expression for the bias and second moment of the
estimate. It also leads to sharper bounds on the variance expression.

C.1 THE UNIVARIATE CASE

From section 2.3, the estimate of the density function is

n
f(x) = % 2 KC"XI/;).
nh g=i h

-x2/
Take K(x) = g(x;1) = L1 & /2. The estimate is
2n
= 1 X . 1
B0 = 1) eleXm. (c.1)
n
£=1
The mean value is given by
Ef (x) = Eg(x-X;h)

fg(x-y;h) fg(y-zsc)doz(Z)dy

fg(x-z,' &F+h2 Ydofz) . (c.2)

The bias in the estimate is then

%( - f(X)} f { X-2 cr-'-b ) (x-z;c)}da(z)g(c.,_’,)

209




- S5 0 I D D N & = o s e

210

In (2.3.20), we defined the quantity

e ) )
{Em_ o(Y15y2) - f(m)f(y;-} dyidya.

This expression, the third part of the variance bound, led to the
l/nh? factor. Using the gaussian kernel we will be able to eliminate

2
the 1/h” term. Substuting for the kernel we obtain

%-2 - ffg(x-yl;h)g(x-yz;h) [fm_z(YJ.)YZ) - f(Yl)f(YZ)] dy1dye

ha
(c.4)

Designate the first part of this expression by Qm 21 Write out fm_
=Ly

£
Y1,Y2) and interchange e y and z integrations.
( ) d interch th d i g
Q-g,1 = ffda(zl)da(22)ff g2(y1-21,¥2-22;0,0p_ ;)
g(x-y1;3h) g(x-y=;h)dyidya. (c.5)
The double integration has been evaluated in the previous ap-
pendix. Define

B = (2402

= 2 6)

Tm-2 P-4 = _. (c.
02+h?
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Then, from (B.20),

Qm-g,l = Jf era(zl)da(z2)g2(x-zl,x-22;5,Zm_z), (c.7)

The second part of (C.lL) is just the square of (C.2). Combining

(3.7) and (C.2) we have,

T

h2 21 22

g(x-z1;8) g(x-22;f§}> . (C.8)

Noting that I?h_glél pm_z{<1.for m#f, we use the Mehler formula and

Cramer's bound to obtain

!Q [§h2 i7h-£] 012 < h?IDm—ﬂi 012 , (c.9)
T ) 5P

2no
l- ;pm_zl

which is the result juoted in section 2.3, equation (2.3.24).

Note that we have taken the {ZE} as independent. The extension
to M-dependent variables is straightfoward. An additional term is
added to Qm_l/ha which, after performing the y integrations, is given

by

J[‘J/\ga(X-Z;:X-Zzsﬁsﬁn_z)[dOh_E(Zl:Zz) - da(z1)da(zz) 1. (c.10)

This contribution to the V(fn(x)) expression can be bounded by

L (M-1)

- 2
n 2no (1-px)
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The result in (C.5) enables us to get an exact expression for

the second moment of the estimate. Using this and essentially (C.2),

we have
E(f,(x) )2 =
n n
E{E?(x-x;h)jrﬂ ?__ Z ZE{EX—Xz;h)g(X-XHI;h}
na
£=1 m=4+1
= 1 fg(X-zs\/02+h2/2‘)da(z)
nhoVy
n n
v 2 z 2 ffda(Zl)da(z2)@(X'Zl:x‘zzsﬁ;ym-g)- (c.11)
n% 53 mog+1

C.2 MEAN INTEGRATED SQUARE ERROR

In

In section 2.3d, we stated that the MISE was = O(l/n /5) . We now
obtain this bound assuming the {Zz} are independent and that the autocor-
relation function satisfies condition B. From (C.2) and (C.1l), the

MISE is:

I = Ef(f“n(x) - £(x))%ax

= f 1 fg(x-z;\/02+h2/2 )do( z)
nb.2\/nrﬁ 2
n n
+ E_ Z /f 82(X'Zl)x'2235;7m_z)da(zl)da(22)

2 pA Z
£=1 m=g+1 * 2

=]
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- 2f g(x-21;0)daf z1) f g(x-z2\/P+h% ) do z2)

Z1 Z2

r
+ [ _L g(x-21;0) g(x-22;30)da(z1)do(zz) .
1722

Use (B.6) and the equality

gg(x-zl,x-22;ﬁ,7m_z) =

g x- (22+22) ; Py g(zl-22;BV2(l-7>
VAR

to perform the x integrations. We obtain:

J, = 1 f do z)
Z

nhoVye

n
z || elzi-z2M2%+h® ) daf z1) dof z2)

21 Zp

,,
71"
g

£=1 m=4+1

+

g(z1-22; V2 o)da(zi)do(zz) .

22

N
,

Use Parseval's reiation
f | &(z1-2z2;0)dofz1) Ao z2)

Z) Z2

- 1 [y
27

5 v
-3 e

Vs,
where

o - | e ata),

(c.12)

(c.13)

(C.1k)
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to write
n n
o | ' ‘ ~v2R2(1-7
2nd, = T _2__ z Z / |de(v) |2e vape(1 /‘)dv
; 2
nh " £=1 m=4+1
-1/2v2(2¢2+h2
-2 f lop V) [Ze [2vE(20%+ ) av
2
+ f o, (V) |%e dv. (C.15)

Add and subtract
_V2 02+h2
(-1 Jf o (V) |Ze ( )dv.
” .

Regrouping terms yields:

2¢r 2,,.2
2ng = VL f log(v) 1267 (1) o0

o
~v3(P+h3) - L vB(2P+hP) S aa
¥ Jf |¢a(v)|2{z€ -2 2 o v +
n n —_
. \' L yrad VEBR(1-0)  -vEe?
. 5%; 2; E: J/ Hﬂx(V)12<{E - e __}. (c.16)
75 p=1 m=g+1

Using [Cpa(v) I§ 1l, the second expression on the right hand side is
bounded by x /c. For the third expression, it follows that as n»x,

h(n) — 0 and

2, 2.2 2,, 2.2 2 2 :
- + - + -
{ (o h)_ 5 1/2v(26"+h"%) | v o

P
— e (3 veht + 0(h8)).

8
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Hence, as h — 0, the third expression of (C.16) can be bounded by
15 /7
_E n o°h?.

8
The last expression of (C.16) is just slightly more difficult to

bound. Substitute for B and 7m-l’ and bring the summations inside the

integral

n n
2 2 2 2 2
2 f e’ (U+h)|CP (v) | Z Z (e¥V T Pm-t 1)y, (c.17)
n? L+]1 m=l+1

Expand the exponential in its power series and let T=m-2. The double

summation is then dominated by

=] n
A NGac IS (0.1

Under condition B, we have the boundj{j |pTl§B2 (see 2.2.33 ). Hence,

=1
(C.18) is dominated by
*© J
+v2 P
nB E: (vgog) = nB e
2 2
j=1 9
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Substituting this result into (C.17), we obtain

n n
-v2( R+h? 2
1=1 m=1+1

ne

2 _y2h2
e N Y 0 N
n
s 2B J/n | (c.19)
n h
Combining all the bounds, we have
3 4

g s L [i_ + #2824 15 oW [, (c.20)

2 n no nh 8

-/1
As was the case for the mean-square error (2.3.26), setting h(n) = n /15

gives for the mean integrated square error,

Jn = £ _/ﬁ (fn(x) - f(x))zdx = O(l/nu/5)

as n¥xo,
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